Массивы в python

Содержание:

Как работает Быстрая сортировка

Быстрая сортировка чаще всего не сможет разделить массив на равные части. Это потому, что весь процесс зависит от того, как мы выбираем опорный элемент. Нам нужно выбрать опору так, чтобы она была примерно больше половины элементов и, следовательно, примерно меньше, чем другая половина элементов. Каким бы интуитивным ни казался этот процесс, это очень сложно сделать.

Подумайте об этом на мгновение — как бы вы выбрали адекватную опору для вашего массива? В истории быстрой сортировки было представлено много идей о том, как выбрать центральную точку — случайный выбор элемента, который не работает из-за того, что «дорогой» выбор случайного элемента не гарантирует хорошего выбора центральной точки; выбор элемента из середины; выбор медианы первого, среднего и последнего элемента; и еще более сложные рекурсивные формулы.

Самый простой подход — просто выбрать первый (или последний) элемент. По иронии судьбы, это приводит к быстрой сортировке на уже отсортированных (или почти отсортированных) массивах.

Именно так большинство людей выбирают реализацию быстрой сортировки, и, так как это просто и этот способ выбора опоры является очень эффективной операцией, и это именно то, что мы будем делать.

Теперь, когда мы выбрали опорный элемент — что нам с ним делать? Опять же, есть несколько способов сделать само разбиение. У нас будет «указатель» на нашу опору, указатель на «меньшие» элементы и указатель на «более крупные» элементы.

Цель состоит в том, чтобы переместить элементы так, чтобы все элементы, меньшие, чем опора, находились слева от него, а все более крупные элементы были справа от него. Меньшие и большие элементы не обязательно будут отсортированы, мы просто хотим, чтобы они находились на правильной стороне оси. Затем мы рекурсивно проходим левую и правую сторону оси.

Рассмотрим пошагово то, что мы планируем сделать, это поможет проиллюстрировать весь процесс. Пусть у нас будет следующий список.

29 | 99 (low),27,41,66,28,44,78,87,19,31,76,58,88,83,97,12,21,44 (high)

Выберем первый элемент как опору 29), а указатель на меньшие элементы (называемый «low») будет следующим элементом, указатель на более крупные элементы (называемый «high») станем последний элемент в списке.

29 | 99 (low),27,41,66,28,44,78,87,19,31,76,58,88,83,97,12,21 (high),44

Мы двигаемся в сторону high то есть влево, пока не найдем значение, которое ниже нашего опорного элемента.

29 | 99 (low),27,41,66,28,44,78,87,19,31,76,58,88,83,97,12,21 (high),44

  • Теперь, когда наш элемент high указывает на элемент 21, то есть на значение меньше чем опорное значение, мы хотим найти значение в начале массива, с которым мы можем поменять его местами. Нет смысла менять местами значение, которое меньше, чем опорное значение, поэтому, если low указывает на меньший элемент, мы пытаемся найти тот, который будет больше.
  • Мы перемещаем переменную low вправо, пока не найдем элемент больше, чем опорное значение. К счастью, low уже имеет значение 89.
  • Мы меняем местами low и high:

29 | 21 (low),27,41,66,28,44,78,87,19,31,76,58,88,83,97,12,99 (high),44

  • Сразу после этого мы перемещает high влево и low вправо (поскольку 21 и 89 теперь на своих местах)
  • Опять же, мы двигаемся high влево, пока не достигнем значения, меньшего, чем опорное значение, и мы сразу находим — 12
  • Теперь мы ищем значение больше, чем опорное значение, двигая low вправо, и находим такое значение 41

Этот процесс продолжается до тех пор, пока указатели low и high наконец не встретятся в одном элементе:

29 | 21,27,12,19,28 (low/high),44,78,87,66,31,76,58,88,83,97,41,99,44

Мы больше не используем это опорное значение, поэтому остается только поменять опорную точку и high, и мы закончили с этим рекурсивным шагом:

28,21,27,12,19,29,44,78,87,66,31,76,58,88,83,97,41,99,44

Как видите, мы достигли того, что все значения, меньшие 29, теперь слева от 29, а все значения больше 29 справа.

Затем алгоритм делает то же самое для коллекции 28,21,27,12,19 (левая сторона) и 44,78,87,66,31,76,58,88,83,97,41,99,44 (правая сторона). И так далее.

Базовое использование

Как создать список

Пустой список создается при помощи пары квадратных скобок:

empty_list = []
print(type(empty_list)) # <class 'list'>
print(len(empty_list)) # 0

Можно создать список, сразу содержащий
какие-то элементы. В этом случае они
перечисляются через запятую и помещаются
в квадратные скобки. Элементы в списках
могут быть гетерогенными (т. е., разных
типов), хотя обычно бывают гомогенными
(одного типа):

homogeneous_list = 
print(homogeneous_list) # 
print(len(homogeneous_list)) # 6

heterogeneous_list = 
print(heterogeneous_list) # 
print(len(heterogeneous_list)) # 2

Для создания списков также может
использоваться конструктор list:

empty_list = list()  # Создаем пустой список
print(empty_list)  # []
new_list = list("Hello, Pythonist!")  # Новый список создается путем перебора заданного итерируемого объекта.
print(new_list)  # 

Также при создании списков используется List Comprehension, к которому мы еще вернемся.

Обращение к элементам списка

Вывод всего списка:

my_list = 
print(my_list)  # 

Вывести отдельные элементы списка можно, обратившись к ним по индексу (не забываем, что отсчет начинается с нуля).

print(my_list)  # 1
print(my_list)  # 2
print(my_list)  # 9

В Python для обращения к элементам можно
использовать и отрицательные индексы.
При этом последний элемент в списке
будет иметь индекс -1, предпоследний —
-2 и так далее.

print(my_list)  # 25
print(my_list)  # 16
print(my_list)  # 9

Распаковка списков (для python-3). Если
поставить перед именем списка звездочку,
все элементы этого списка будут переданы
функции в качестве отдельных аргументов.

my_list = 
print(my_list)  # 
print(*my_list)  # 1 2 9 16 25

words = 
print(words)  # 
print(*words)  # I love Python I love

Списки мутабельны

Списки — это изменяемые контейнеры.
То есть, вы можете изменять содержимое
списка, добавляя и удаляя элементы.

Элементы списка можно перегруппировать,
используя для индексирования другой
список.

Создадим новый список из элементов списка , а индексы нужных элементов возьмем из списка :

my_list = 
my_index = 
my_new_list =  for i in my_index]
print(my_new_list)  # 

1. Определения и классификация

1.1 Что и зачем

  • Генераторы выражений предназначены для компактного и удобного способа генерации коллекций элементов, а также преобразования одного типа коллекций в другой.
  • В процессе генерации или преобразования возможно применение условий и модификация элементов.
  • Генераторы выражений являются синтаксическим сахаром и не решают задач, которые нельзя было бы решить без их использования.

1.2 Преимущества использования генераторов выражений

  • Более короткий и удобный синтаксис, чем генерация в обычном цикле.
  • Более понятный и читаемый синтаксис чем функциональный аналог сочетающий одновременное применение функций map(), filter() и lambda.
  • В целом: быстрее набирать, легче читать, особенно когда подобных операций много в коде.

1.3 Классификация и особенности

  • выражение-генератор (generator expression) — выражение в круглых скобках которое выдает создает на каждой итерации новый элемент по правилам.
  • генератор коллекции — обобщенное название для генератора списка (list comprehension), генератора словаря (dictionary comprehension) и генератора множества (set comprehension).

Базовые операции

Математические операции над массивами выполняются поэлементно. Создается новый массив, который заполняется результатами действия оператора.

>>> import numpy as np
>>> a = np.array()
>>> b = np.arange(4)
>>> a + b
array()
>>> a - b
array()
>>> a * b
array()
>>> a  b  # При делении на 0 возвращается inf (бесконечность)
array()
<string>:1: RuntimeWarning: divide by zero encountered in true_divide
>>> a ** b
array()
>>> a % b  # При взятии остатка от деления на 0 возвращается 0
<string>:1: RuntimeWarning: divide by zero encountered in remainder
array()

Для этого, естественно, массивы должны быть одинаковых размеров.

>>> c = np.array(, 4, 5, 6]])
>>> d = np.array(, 3, 4], 5, 6]])
>>> c + d
Traceback (most recent call last):
  File "<input>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (2,3) (3,2)

Также можно производить математические операции между массивом и числом. В этом случае к каждому элементу прибавляется (или что вы там делаете) это число.

>>> a + 1
array()
>>> a ** 3
array()
>>> a < 35  # И фильтрацию можно проводить
array(, dtype=bool)

NumPy также предоставляет множество математических операций для обработки массивов:

>>> np.cos(a)
array()
>>> np.arctan(a)
array()
>>> np.sinh(a)
array()

Полный список можно посмотреть здесь.

Многие унарные операции, такие как, например, вычисление суммы всех элементов массива, представлены также и в виде методов класса ndarray.

>>> a = np.array(, 4, 5, 6]])
>>> np.sum(a)
21
>>> a.sum()
21
>>> a.min()
1
>>> a.max()
6

По умолчанию, эти операции применяются к массиву, как если бы он был списком чисел, независимо от его формы. Однако, указав параметр axis, можно применить операцию для указанной оси массива:

8. Использование range()

Особенности функции range():

  • Наиболее часто функция range() применяется для запуска цикла for нужное количество раз. Например, смотрите генерацию матрицы в примерах выше.
  • В Python 3 range() возвращает генератор, который при каждом к нему обращении выдает очередной элемент.
  • Исполльзуемые параметры аналогичны таковым в срезах (кроме первого примера с одним параметром):
    • range(stop) — в данном случае с 0 до stop-1;
    • range(start, stop) — Аналогично примеру выше, но можно задать начало отличное от нуля, можно и отрицательное;
    • range(start, stop, step) — Добавляем параметр шага, который может быть отрицательным, тогда перебор в обратном порядке.
  • В Python 2 были 2 функции:
    • range(…) которая аналогична выражению list(range(…)) в Python 3 — то есть она выдавала не итератор, а сразу готовый список. То есть все проблемы возможной нехватки памяти, описанные в разделе 4 актуальны, и использовать ее в Python 2 надо очень аккуратно!
    • xrange(…) — которая работала аналогично range(…) в Python 3 и из 3 версии была исключена.

NumPy N-мерный массив

NumPy — это библиотека Python, которая может использоваться для научных и числовых приложений, а также инструмент для операций с линейной алгеброй.

Основной структурой данных в NumPy является ndarray, который является сокращенным именем для N-мерного массива. При работе с NumPy данные в ndarray просто называются массивом.

Это массив фиксированного размера в памяти, который содержит данные одного типа, такие как целые числа или значения с плавающей запятой.

Доступ к типу данных, поддерживаемому массивом, можно получить через атрибут «dtype» в массиве. Доступ к измерениям массива можно получить через атрибут «shape», который возвращает кортеж, описывающий длину каждого измерения. Есть множество других атрибутов. Узнайте больше здесь:

N-мерный массив

Простой способ создать массив из данных или простых структур данных Python, таких как список, — это использовать функцию array ().

В приведенном ниже примере создается список Python из трех значений с плавающей запятой, затем создается ndarray из списка и осуществляется доступ к форме и типу массивов.

При выполнении примера печатается содержимое ndarray, фигура, которая является одномерным массивом с 3 элементами, и тип данных, который является 64-битной плавающей точкой.

Методы списков

len()

Метод возвращает длину объекта (списка, строки, кортежа или словаря).

принимает один аргумент, который может быть или последовательностью (например, строка, байты, кортеж, список, диапазон), или коллекцией (например, словарь, множество, frozenset).

list1 =   # список
print(len(list1)) # в списке 3 элемента, в выводе команды будет "3"

str1 = 'basketball'  # строка
print(len(str1))  # в строке 9 букв, в выводе команды будет "9"

tuple1 = (2, 3, 4, 5)  # кортеж
print(len(tuple1))  # в кортеже 4 элемента, в выводе команды будет "4"

dict1 = {'name': 'John', 'age': 4, 'score': 45} # словарь
print(len(dict1))  # в словаре 3 пары ключ-значение, в выводе команды будет "3"

index()

возвращает индекс элемента. Сам элемент передается методу в качестве аргумента. Возвращается индекс первого вхождения этого элемента (т. е., если в списке два одинаковых элемента, вернется индекс первого).

numbers = 
words = 

print(numbers.index(9)) # 4
print(numbers.index(2)) # 1
print(words.index("I")) # 0
print(words.index("JavaScript")) # возвращает ValueError, поскольку 'JavaScript' в списке 'words' нет

Первый результат очевиден. Второй и
третий output демонстрируют возврат индекса
именно первого вхождения.

Цифра «2» встречается в списке дважды,
первое ее вхождение имеет индекс 1,
второе — 2. Метод index() возвращает индекс
1.

Аналогично возвращается индекс 0 для элемента «I».

Если элемент, переданный в качестве аргумента, вообще не встречается в списке, вернется ValueError. Так получилось с попыткой выяснить индекс «JavaScript» в списке .

Опциональные аргументы

Чтобы ограничить поиск элемента
конкретной подпоследовательностью,
можно использовать опциональные
аргументы.

words = 
print(words.index("am", 2, 5)) # 4

Метод index() будет искать элемент «am» в диапазоне от элемента с индексом 2 (включительно) до элемента с индексом 5 (этот последний элемент не входит в диапазон).

При этом возвращаемый индекс — индекс
элемента в целом списке, а не в указанном
диапазоне.

pop()

Метод удаляет и возвращает последний элемент списка.

Этому методу можно передавать в качестве параметра индекс элемента, который вы хотите удалить (это опционально). Если конкретный индекс не указан, метод удаляет и возвращает последний элемент списка.

Если в списке нет указанного вами индекса, метод выбросит exception .

cities = 

print "City popped is: ", cities.pop() # City popped is: San Francisco
print "City at index 2 is  : ", cities.pop(2) # City at index 2 is: San Antonio

Базовый функционал стека

Для реализации базового функционала
стека в программах на Python часто
используется связка метода pop() и метода
append():

stack = []

for i in range(5):
    stack.append(i)

while len(stack):
    print(stack.pop())

Умножение и сложение

Чтобы сложить матрицы, нужно сложить все их соответствующие элементы. В Python для их сложения используется обычный оператор «+».

Пример сложения:

arr1 = np.array(,])
arr2 = np.array(,])
temp = arr1 + arr2
print(temp)

Результирующая матрица будет равна:

 ]

Важно помнить, что складывать можно только матрицы с одинаковым количеством строк и столбцов, иначе программа на Python завершится с исключением ValueError. Умножение матриц сильно отличается от сложения

Не получится просто перемножить соответствующие элементы двух матриц. Во-первых, матрицы должны быть согласованными, то есть количество столбцов одной должно быть равно количеству строк другой и наоборот, иначе программа вызовет ошибку

Умножение матриц сильно отличается от сложения. Не получится просто перемножить соответствующие элементы двух матриц. Во-первых, матрицы должны быть согласованными, то есть количество столбцов одной должно быть равно количеству строк другой и наоборот, иначе программа вызовет ошибку.

Умножение в NumPy выполняется с помощью метода dot().

Пример умножения:

arr1 = np.array(,])
arr2 = np.array(,])
temp = arr1.dot(arr2)
print(temp)

Результат выполнения этого кода будет следующий:

 ]

Как она получилась? Разберём число 21, его позиция это 1 строка и 2 столбец, тогда мы берем 1 строку первой матрицы и умножаем на 2 столбец второй. Причём элементы умножаются позиционно, то есть 1 на 1 и 2 на 2, а результаты складываются: * = 3 * 4 + 3 * 3 = 21.

Индекс строки в Python

Строка представляет собой упорядоченный набор символов. Это значит, что каждый символ в строке занимает свое место – индекс. Например, у строки ‘string’, символ ‘s’ имеет индекс 0 и далее по порядку:

Первый по счету символ в строке всегда будет иметь индекс 0. Таким образом, обратившись по индексу к элементу, мы можем узнать его значение. В чем и состоит смысл индексов. У пробела, так же есть индекс.

Так мы получим всю строку целиком:

get_str = ‘это строка’ print(get_str) это строка

А здесь, обратившись по индексу 5, получаем его значение – символ ‘t’.

get_s = ‘это строка’ print(get_s) t

При обращении к несуществующему индексу, программа выведет ошибку.

get_s = ‘это строка’ print(get_s) IndexError: string index out of range

Перестройка массива

После нарезки данных вам может понадобиться изменить их.

Например, некоторые библиотеки, такие как scikit-learn, могут требовать, чтобы одномерный массив выходных переменных (y) был сформирован как двумерный массив с одним столбцом и результатами для каждого столбца.

Некоторые алгоритмы, такие как рекуррентная нейронная сеть с короткой кратковременной памятью в Keras, требуют ввода данных в виде трехмерного массива, состоящего из выборок, временных шагов и функций.

Важно знать, как изменить ваши массивы NumPy, чтобы ваши данные соответствовали ожиданиям конкретных библиотек Python. Мы рассмотрим эти два примера

Форма данных

Массивы NumPy имеют атрибут shape, который возвращает кортеж длины каждого измерения массива.

Например:

При выполнении примера печатается кортеж для одного измерения.

Кортеж с двумя длинами возвращается для двумерного массива.

Выполнение примера возвращает кортеж с количеством строк и столбцов.

Вы можете использовать размер измерений вашего массива в измерении формы, например, указав параметры.

К элементам кортежа можно обращаться точно так же, как к массиву, с 0-м индексом для числа строк и 1-м индексом для количества столбцов. Например:

Запуск примера позволяет получить доступ к конкретному размеру каждого измерения.

Изменить форму 1D в 2D Array

Обычно требуется преобразовать одномерный массив в двумерный массив с одним столбцом и несколькими массивами.

NumPy предоставляет функцию reshape () для объекта массива NumPy, который можно использовать для изменения формы данных.

Функция reshape () принимает единственный аргумент, который задает новую форму массива. В случае преобразования одномерного массива в двумерный массив с одним столбцом кортеж будет иметь форму массива в качестве первого измерения (data.shape ) и 1 для второго измерения.

Собрав все это вместе, мы получим следующий проработанный пример.

При выполнении примера печатается форма одномерного массива, изменяется массив, чтобы иметь 5 строк с 1 столбцом, а затем печатается эта новая форма.

Изменить форму 2D в 3D Array

Обычно требуется преобразовать двумерные данные, где каждая строка представляет последовательность в трехмерный массив для алгоритмов, которые ожидают множество выборок за один или несколько временных шагов и одну или несколько функций.

Хорошим примером являетсямодель в библиотеке глубокого обучения Keras.

Функция изменения формы может использоваться напрямую, указывая новую размерность. Это ясно с примером, где каждая последовательность имеет несколько временных шагов с одним наблюдением (функцией) на каждый временной шаг.

Мы можем использовать размеры в атрибуте shape в массиве, чтобы указать количество выборок (строк) и столбцов (временных шагов) и зафиксировать количество объектов в 1

Собрав все это вместе, мы получим следующий проработанный пример.

При выполнении примера сначала печатается размер каждого измерения в двумерном массиве, изменяется форма массива, а затем суммируется форма нового трехмерного массива.

2 Общие подходы к работе с любой коллекцией

x in s x not in s

словаря

строки

2.4 Обход всех элементов коллекции в цикле for in

Обратите внимание на следующие моменты:

  • Порядок обработки элементов для не индексированных коллекций будет не тот, как при их создании
  • У прохода в цикле по словарю есть свои особенности:

    Но чаще всего нужны пары ключ(key) — значение (value).

  • Возможная ошибка: Не меняйте количество элементов коллекции в теле цикла во время итерации по этой же коллекции! — Это порождает не всегда очевидные на первый взгляд ошибки.
    Чтобы этого избежать подобных побочных эффектов, можно, например, итерировать копию коллекции:
  • Функции min(), max() — поиск минимального и максимального элемента соответственно — работают не только для числовых, но и для строковых значений.
  • sum() — суммирование всех элементов, если они все числовые.

Соединение и копирование массивов

Массивы можно соединять in place, т.е. перезаписывая, с помощью метода list.extend:

>>> A = , 1, 2
>>> B = 3, 4, 5
>>> id(A)
4337064576
>>> A.extend(B)
>>> id(A)
4337064576
>>> A
, 1, 2, 3, 4, 5
>>> B
3, 4, 5

Заметим, что оператор + для списков создаёт новый список.

С копированием массивов нужно быть осторожным.
Python никогда не осуществляет копирование явно:

>>> A = , 1, 2
>>> B = A
>>> B1 = 'take_care!'
>>> A
, 'take_care!', 2
>>> B
, 'take_care!', 2
>>> A is B
True

В строчке B = A лишь создаётся ещё одна ссылка на объект , которая присваивается переменной B.
В итоге A и B будут указывать на один и тот же объект.

Чтобы создать копию, необходимо поэлементно создать новый массив из исходного.
Например, с помощью функции list() или метода list.copy:

>>> A = , 1, 2
>>> B = list(A)
>>> C = A.copy()
>>> A is B
False
>>> A is C
False
>>> B is C
False
>>> A
, 1, 2
>>> B
, 1, 2
>>> C
, 1, 2

Создание

Для создании матрицы используется функция array(). В функцию передаётся список. Вот пример создания, мы подаём в качестве аргумента функции двумерный список:

a = np.array(, ])

Вторым параметром можно задать тип элементов матрицы:

a = np.array(,], int)
print(a)

Тогда в консоль выведется:

 ]

Обратите внимание, что если изменить int на str, то тип элементов изменился на строковый. Кроме того, при выводе в консоль NumPy автоматически отформатировал вывод, чтобы он выглядел как матрица, а элементы располагались друг под другом

В качестве типов элементов можно использовать int, float, bool, complex, bytes, str, buffers. Также можно использовать и другие типы NumPy: логические, целочисленные, беззнаковые целочисленные, вещественные, комплексные. Вот несколько примеров:

  • np.bool8 — логическая переменная, которая занимает 1 байт памяти.
  • np.int64 — целое число, занимающее 8 байт.
  • np.uint16 — беззнаковое целое число, занимающее 2 байта в памяти.
  • np.float32 — вещественное число, занимающее 4 байта в памяти.
  • np.complex64 — комплексное число, состоящее из 4 байтового вещественного числа действительной части и 4 байтов мнимой.

Вы также можете узнать размер матрицы, для этого используйте атрибут shape:

size = a.shape
print(size) # Выведет (2, 3)

Первое число (2) — количество строк, второе число (3) — количество столбцов.

Нулевая матрица

Если необходимо создать матрицу, состоящую только из нулей, используйте функцию zeros():

a_of_zeros = np.zeros((2,2))
print(a_of_zeros)

Результат этого кода будет следующий:

 ]

Создание массивов

В NumPy существует много способов создать массив. Один из наиболее простых — создать массив из обычных списков или кортежей Python, используя функцию numpy.array() (запомните: array — функция, создающая объект типа ndarray):

>>> import numpy as np
>>> a = np.array()
>>> a
array()
>>> type(a)
<class 'numpy.ndarray'>

Функция array() трансформирует вложенные последовательности в многомерные массивы. Тип элементов массива зависит от типа элементов исходной последовательности (но можно и переопределить его в момент создания).

>>> b = np.array(, 4, 5, 6]])
>>> b
array(,
       ])

Можно также переопределить тип в момент создания:

>>> b = np.array(, 4, 5, 6]], dtype=np.complex)
>>> b
array(,
       ])

Функция array() не единственная функция для создания массивов. Обычно элементы массива вначале неизвестны, а массив, в котором они будут храниться, уже нужен. Поэтому имеется несколько функций для того, чтобы создавать массивы с каким-то исходным содержимым (по умолчанию тип создаваемого массива — float64).

Функция zeros() создает массив из нулей, а функция ones() — массив из единиц. Обе функции принимают кортеж с размерами, и аргумент dtype:

>>> np.zeros((3, 5))
array(,
       ,
       ])
>>> np.ones((2, 2, 2))
array(,
        ],

       ,
        ]])

Функция eye() создаёт единичную матрицу (двумерный массив)

>>> np.eye(5)
array(,
       ,
       ,
       ,
       ])

Функция empty() создает массив без его заполнения. Исходное содержимое случайно и зависит от состояния памяти на момент создания массива (то есть от того мусора, что в ней хранится):

>>> np.empty((3, 3))
array(,
       ,
       ])
>>> np.empty((3, 3))
array(,
       ,
       ])

Для создания последовательностей чисел, в NumPy имеется функция arange(), аналогичная встроенной в Python range(), только вместо списков она возвращает массивы, и принимает не только целые значения:

>>> np.arange(10, 30, 5)
array()
>>> np.arange(, 1, 0.1)
array()

Вообще, при использовании arange() с аргументами типа float, сложно быть уверенным в том, сколько элементов будет получено (из-за ограничения точности чисел с плавающей запятой). Поэтому, в таких случаях обычно лучше использовать функцию linspace(), которая вместо шага в качестве одного из аргументов принимает число, равное количеству нужных элементов:

>>> np.linspace(, 2, 9)  # 9 чисел от 0 до 2 включительно
array()

fromfunction(): применяет функцию ко всем комбинациям индексов

Создание списков на Python

  • Создать список можно несколькими способами. Рассмотрим их.

1. Получение списка через присваивание конкретных значений

Так выглядит в коде Python пустой список:

s =   # Пустой список

Примеры создания списков со значениями:

l = 25, 755, -40, 57, -41   # список целых чисел
l = 1.13, 5.34, 12.63, 4.6, 34.0, 12.8   # список из дробных чисел
l = "Sveta", "Sergei", "Ivan", "Dasha"   # список из строк
l = "Москва", "Иванов", 12, 124   # смешанный список
l = , , , 1, , 1, 1, 1,    # список, состоящий из списков
l = 's', 'p', 'isok', 2 # список из значений и списка

2. Списки при помощи функции List()

Получаем список при помощи функции List()

empty_list = list() # пустой список
l = list ('spisok')  # 'spisok' - строка
print(l) # - результат - список

4. Генераторы списков

  • В python создать список можно также при помощи генераторов, — это довольно-таки новый метод:
  • Первый простой способ.

Сложение одинаковых списков заменяется умножением:

# список из 10 элементов, заполненный единицами
l = 1*10
# список l = 

Второй способ сложнее.

l = i for i in range(10)
# список l = 

или такой пример:

c = c * 3 for c in 'list'
print (c) # 

Пример:
Заполнить список квадратами чисел от 0 до 9, используя генератор списка.

Решение: 

l = i*i for i in range(10)

еще пример:

l = (i+1)+i for i in range(10)
print(l) # 

Случайные числа в списке:

from random import randint 
l = randint(10,80) for x in range(10)
# 10 чисел, сгенерированных случайным образом в диапазоне (10,80)

Задание Python 4_1:
Создайте список целых чисел от -20 до 30 (генерация).

Результат:

Задание Python 4_2:
Создайте список целых чисел от -10 до 10 с шагом 2 (генерация list).

Результат:

Задание Python 4_3:
Создайте список из 20 пятерок (генерация).

Результат:

Задание Python 4_4:
Создайте список из сумм троек чисел от 0 до 10, используя генератор списка (0 + 1 + 2, 1 + 2 + 3, …).

Результат:

Задание Python 4_5 (сложное):
Заполните массив элементами арифметической прогрессии. Её первый элемент, разность и количество элементов нужно ввести с клавиатуры.
  
* Формула для получения n-го члена прогрессии: an = a1 + (n-1) * d

Простейшие операции над списками

  • Списки можно складывать (конкатенировать) с помощью знака «+»:
l = 1, 3 + 4, 23 + 5
 
# Результат:
# l = 
33, -12, 'may' + 21, 48.5, 33 # 

или так:

a=33, -12, 'may'
b=21, 48.5, 33
print(a+b)# 

Операция повторения:

,,,1,1,1 * 2 # , , , , , ]

Пример:
Для списков операция переприсваивания значения отдельного элемента списка разрешена!:

a=3, 2, 1
a1=;
print(a) # 

Можно!

Задание 4_6:
В строке записана сумма натуральных чисел: ‘1+25+3’. Вычислите это выражение. Работать со строкой, как со списком.

Начало программы:

s=input('введите строку')
l=list(str(s));

Как узнать длину списка?

Операции над двумерным массивом

Собственно, никаких новых операций над двумерными массивами нет. Вы всегда работаете или с внешним массивом, или с каким-то внутренним массивом, и можете использовать все операции, которые знаете для одномерных массивов. Например, — это длина «внешнего» массива (в примере выше получается 3, т.к

содержит три элемента, и не важно, что каждый из них тоже массив), а — длина внутреннего массива на позиции 2 (т.е. 2 в примере выше)

Для массива выше (того, у которого каждый подмассив имеет свою длину) получим , и, например, .

Аналогично работают все остальные операции. приписывает к «внешнему» массиву еще один «внутренний» массив, а приписывает число 3 к тому «внутреннему» массиву, который находится на позиции 2. Далее, удаляет последний «внутренний» из «внешнего» массива, а удаляет последний элемент из «внутреннего» массива на позиции 2. Аналогично работают и и т.д. — все операции, которые я приводил выше.

Ввод-вывод массива

Как вам считывать массив? Во-первых, если все элементы массива задаются в одной строке входного файла. Тогда есть два способа. Первый — длинный, но довольно понятный:

a = input().split()  # считали строку и разбили ее по пробелам
                     # получился уже массив, но питон пока не понимает, что в массиве числа
for i in range(len(a)):
    a = int(a)  # прошли по всем элементам массива и превратили их в числа

Второй — покороче, но попахивает магией:

a = list(map(int, input().split()))

Может показаться страшно, но на самом деле вы уже встречали в конструкции

x, y = map(int, input().split())

когда вам надо было считать два числа из одной строки. Это считывает строку (), разбивает по пробелам (), и превращает каждую строку в число (). Для чтения массива все то же самое, только вы еще заворачиваете все это в , чтобы явно сказать питону, что это массив.

Какой из этих двух способов использовать для чтения данных из одной строки — выбирать вам.

Обратите внимание, что в обоих способах вам не надо знать заранее, сколько элементов будет в массиве — получится столько, сколько чисел в строке. В задачах часто бывает что задается сначала количество элементов, а потом (обычно на следующей строке) сами элементы

Это удобно в паскале, c++ и т.п., где нет способа легко считать числа до конца строки; в питоне вам это не надо, вы легко считываете сразу все элементы массива до конца строки, поэтому заданное число элементов вы считываете, но дальше не используете:

n = int(input())  # больше n не используем
a = list(map(int, input().split()))

Еще бывает, что числа для массива задаются по одному в строке. Тогда вам проще всего заранее знать, сколько будет вводиться чисел. Обычно как раз так данные и даются: сначала количество элементов, потом сами элементы. Тогда все вводится легко:

n = int(input())
a = []  # пустой массив, т.е. массив длины 0
for i in range(n):
    a.append(int(input()))  # считали число и сразу добавили в конец массива

Более сложные варианты — последовательность элементов по одному в строке, заканчивающаяся нулем, или задано количество элементов и сами элементы в той же строке — придумайте сами, как сделать (можете подумать сейчас, можете потом, когда попадется в задаче). Вы уже знаете все, что для этого надо.

Как выводить массив? Если надо по одному числу в строку, то просто:

for i in range(len(a)):
    print(a)

Если же надо все числа в одну строку, то есть два способа. Во-первых, можно команде передать специальный параметр , который обозначает «заканчивать вывод пробелом (а не переводом строки)»:

for i in range(len(a)):
    print(a, end=" ")

Есть другой, более простой способ:

print(*a)

Эта магия обозначает вот что: возьми все элементы массива и передай их отдельными аргументами в одну команду . Т.е. получается .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector