Частота процессора: тактовая, максимальная. тактовая частота процессора какая лучше
Содержание:
- На что влияет тактовая частота процессора?
- Функции
- Как влияет частота ОЗУ на производительность в играх
- Ширина спектра сигнала
- Первая передача — коды RZ и Манчестер-II
- Тактовая частота: что это такое и как она влияет на скорость работы компьютера
- Классификация
- Технические характеристики
- Немного матчасти
- Как увеличить тактовую частоту процессора
- Серия
- Редуктор — координирование данных 4В5В
- Увеличение частоты путем разгона
- Как узнать изменить частоту процессора
- Подведем итоги
На что влияет тактовая частота процессора?
Каждый пользователь компьютерной техники не редко задавался этим вопросом, особенно решив приобрести, новое оборудование. Но для того чтобы ответить на вопрос — тактовая частота процессора на что же она влияет, необходимо в первую очередь понять, что собой она представляет?
data-ad-client=»ca-pub-3158720937153219″data-ad-slot=»6358577375″>
ВЛИЯНИЕ ТАКТОВОЙ частоты процессора на производительность?
Этот показатель говорит о количестве производимых процессором вычислений в одну секунду. Ну и естественно, что чем выше частота, тем больше операций в единицу времени может произвести процессор. У современных устройств этот показатель находится в пределах от 1 до 4 ГГц. Определяется он путем умножения базовой или внешней частоты на определенный коэффициент. Увеличить частоту процессора можно путем его «разгона». Мировые лидеры по производству этих устройств некоторые свои изделия ориентируют на возможный их разгон.
При выборе такого устройства важным показателем производительности является не только его частота. На это влияет также ядреность процессора.В настоящее время практически не осталось таких устройств, которые имеют только одно ядро. Многоядерные процессоры полностью вытеснили с рынка своих одноядерных предшественников.
О ядерности и тактовой частоте
Начнем с того, что утверждение, что процессор имеет частоту равную общей суме этого показателя каждого из ядер не верное. Но почему многоядерный процессор лучше и эффективнее? Потому, что каждое из ядер производит свою часть общей работы, если это позволяет, обрабатывая процессором программа. Таким образом, ядреность значительно увеличивает производительность системы, в том случае если обрабатываемую информацию можно разделить на части. Но если это сделать невозможно, работает только одно ядро процессора. При этом общая его производительность равна тактовой частоте этого ядра.
data-ad-layout=»in-article»data-ad-format=»fluid»data-ad-client=»ca-pub-3158720937153219″data-ad-slot=»2288019166″>
В общем, если вам предстоит работа с графикой, статическим изображением, видео, музыкой многоядерный процессор как раз то, что необходимо. Но если вы игроман, то в этом случае лучше брать не сильно многоядерный процессор, потому что программисты могут и не предусматривать разделение программных процессов на части. Поэтому, для игр более мощный процессор подойдет лучше.
Об архитектуре процессора
Кроме этого, производительность системы зависит и от архитектуры процессора. Естественно, что чем короче путь сигнала от точки отправки до точки назначения, тем быстрее производится обработка информации. По этой причине процессоры от компании Intel работают лучше, чем от фирмы AMD, при одинаковой тактовой частоте.Итоги
Таким образом, тактовая частота процессора — это его сила или мощь. Она влияет на производительность системы. Но при этом необходимо не забывать что этот параметр, кроме мощности, зависит от количества ядер и от архитектуры этого устройства. Выбирать процессор необходимо с учетом того, с чем ему в будущем нужно будет работать? Для игр лучше брать процессор помощнее, для всего остального подойдет многоядерный процессор с не очень большой тактовой частотой.
Функции
Разблокированный множитель – служит для изменения тактовой частоты в определенных границах. Позволяет легко повысить быстродействие процессора без специального «разгона» (оверлокинга).
Турбо-режим – увеличивает быстродействие процессора за счет более равномерного распределения нагрузки на ядра. Включение и выключение этого режима обычно происходит автоматически. В процессорах Intel данная опция называется «Turbo Boost», а в CPU AMD – «Turbo Core».
Некоторые модели Intel помимо Turbo Boost имеют более продвинутый режим – Turbo Max 3.0, который дает еще больший прирост быстродействия.
Как влияет частота ОЗУ на производительность в играх
Закономерный вопрос: влияет ли частота памяти в играх и настолько сильно?
Для начала – немного теории: как именно компьютер обрабатывает «сферическую в вакууме» видеоигру.
Нагляднее всего это демонстрирует игра с открытым миром и бесшовными локациями, запущенная на слабом компьютере: при переходе между областями – условными квадратами площади, новый кусок карты при недостатке частоты оперативки, не успевает загрузиться. То есть, в теории при высокой частоте ОЗУ фризов и лагов быть не должно.
Также стоит отметить, что на ФПС влияет не только тактовая частота оперативки, но и ее объем: при недостатке оперативной памяти придется постоянно перезаписывать отдельные части одной и той же локации, замедляя работу компьютера в целом и отрисовку окружающей обстановки в частности.
Принимая во внимание постоянное увеличение системных требований современными игроделами, при сборке компа рекомендую думать на перспективу – частоты и объема, которых сегодня покажется много, может оказаться недостаточно уже через год, во время релиза какого-нибудь Cyberpunk 2077
Ширина спектра сигнала
Сигнал, имеющий синусоидальную форму, называется гармоническим. Его параметры определяются частотой и амплитудой. Чем больше форма сигнала отличается от синусоиды, тем больше гармонических составляющих он несет. Частоты гармоник кратны частоте несущей. Стандарты электропитания, например, требуют оценки качества напряжения сигнала вплоть до тридцатой гармоники.
Диапазон частот сложного сигнала называется спектральной шириной сигнала. Он включает основную составляющую, которая определяет несущую, и гармонические составляющие, которые задают форму импульсов.
Восстановление формы импульсов производится на аппаратном уровне, поэтому гармонические составляющие убирают с помощью фильтров.
Спектральная ширина сигнала зависит от тактовой частоты, метода кодирования и характеристик фильтра передатчика.
Рисунок 6 иллюстрирует, как метод кодирования позволяет уменьшить частоту несущей. Для трех методов кодирования приведены ситуации, требующие максимальную частоту несущей. Один герц несущей передает один бит (1) при манчестерском кодировании, два бита (01) кода NRZ и четыре бита (1111) кода MLT-3. Фактор кодирования (передача) составляет соответственно один, два и четыре.
Другие комбинации битов требуют меньшей частоты. Например, при чередовании нулей и единиц частота несущей кода MLT-3 уменьшается еще в два раза, длительная последовательность нулей уменьшает частоту несущей до нуля.
Спектральную ширину сигнала не следует путать с тактовой частотой. Тактовая частота — это метроном, задающий темп мелодии. На рисунке 6 тактовой частоте соответствует скорость чередования битов. Спектральная ширина сигнала в данной аналогии это огибающая сигнала при условии, что она позволяет восстановить исходный импульсный сигнал.
В аналоговой передаче спектральная ширина — это мелодия, имеющая гораздо более широкий спектр. Если попытаться передать мелодию по телефону, придется пожертвовать спектром. Линия связи, имеющая узкую полосу пропускания, «обрежет» верхние гармоники. При этом, качество звучания мелодии на выходе узкополосного канала связи ухудшится.
При цифровой передаче для восстановления исходного сигнала требуется меньше гармоник, чем для аналогового. Технология передачи и приема цифровых сигналов позволяет восстановить исходный сигнал по несущей спектра. Однако для уменьшения коэффициента ошибок необходимо присутствие первой гармоники, что удваивает ширину спектра или частотный диапазон.
Первая передача — коды RZ и Манчестер-II
Код RZ
RZ — это трехуровневый код, обеспечивающий возврат к нулевому уровню после передачи каждого бита информации. Его так и называют кодирование с возвратом к нулю (Return to Zero). Логическому нулю соответствует положительный импульс, логической единице — отрицательный.
Информационный переход осуществляется в начале бита, возврат к нулевому уровню — в середине бита. Особенностью кода RZ является то, что в центре бита всегда есть переход (положительный или отрицательный). Следовательно, каждый бит обозначен. Приемник может выделить синхроимпульс (строб), имеющий частоту следования импульсов, из самого сигнала. Привязка производится к каждому биту, что обеспечивает синхронизацию приемника с передатчиком. Такие коды, несущие в себе строб, называются самосинхронизирующимися.
Недостаток кода RZ состоит в том, что он не дает выигрыша в скорости передачи данных. Для передачи со скоростью 10 Мбит/с требуется частота несущей 10 МГц. Кроме того, для различения трех уровней необходимо лучшее соотношение сигнал / шум на входе в приемник, чем для двухуровневых кодов.
Наиболее часто код RZ используется в оптоволоконных сетях. При передаче света не существует положительных и отрицательных сигналов, поэтому используют три уровня мощности световых импульсов.
Код Манчестер-II
Код Манчестер-II или манчестерский код получил наибольшее распространение в локальных сетях. Он также относится к самосинхронизирующимся кодам, но в отличие от кода RZ имеет не три, а только два уровня, что обеспечивает лучшую помехозащищенность.
Логическому нулю соответствует переход на верхний уровень в центре битового интервала, логической единице — переход на нижний уровень. Логика кодирования хорошо видна на примере передачи последовательности единиц или нулей. При передаче чередующихся битов частота следования импульсов уменьшается в два раза.
Информационные переходы в средине бита остаются, а граничные (на границе битовых интервалов) — при чередовании единиц и нулей отсутствуют. Это выполняется с помощью последовательности запрещающих импульсов. Эти импульсы синхронизируются с информационными и обеспечивают запрет нежелательных граничных переходов.
Изменение сигнала в центре каждого бита позволяет легко выделить синхросигнал. Самосинхронизация дает возможность передачи больших пакетов информацию без потерь из-за различий тактовой частоты передатчика и приемника.
Большое достоинство манчестерского кода — отсутствие постоянной составляющей при передаче длинной последовательности единиц или нулей. Благодаря этому гальваническая развязка сигналов выполняется простейшими способами, например, с помощью импульсных трансформаторов.
Частотный спектр сигнала при манчестерском кодировании включает только две несущие частоты. Для десятимегабитного протокола — это 10 МГц при передаче сигнала, состоящего из одних нулей или одних единиц, и 5 МГц — для сигнала с чередованием нулей и единиц. Поэтому с помощью полосовых фильтров можно легко отфильтровать все другие частоты.
Код Манчестер-II нашел применение в оптоволоконных и электропроводных сетях. Самый распространенный протокол локальных сетей Ethernet 10 Мбит/с использует именно этот код.
Тактовая частота: что это такое и как она влияет на скорость работы компьютера
Для синхронизации и согласования работы различных устройств, имеющих разное быстродействие, используется тактовая частота. Любая команда выполняется за один или несколько циклов (тактов), а скорость чередования импульсов (частота) задает ритм работы всех составляющих системы и во многом определяет скорость работы. Источником тактовой частоты является отдельный блок – генератор, который представляет собой кварцевый резонатор. Чем больше импульсов за одну секунду подает генератор, тем быстрее происходят вычислительные операции, тем быстрее работает компьютер. Именно так до недавнего времени и было, но с изобретением многоядерных процессоров ситуация несколько изменилась. Итак, тактовая частота – это количество импульсов в секунду, которые синхронизируют работу компьютера.
Сегодня на производительность работы компьютера оказывает влияние не только тактовая частота, а и объем кэша, количество ядер, скорость работы видеокарты и архитектура процессора. Например, современные многоядерные процессоры имеют относительно невысокую тактовую частоту, а работают намного быстрее. Это достигается путем программного разделения вычислительных операций между ядрами процессора. Таким образом, операция при меньшей скорости обработки выполняется быстрее – увеличивается быстродействие компьютера. После появления многоядерных процессоров повышение тактовой частоты стало не столь актуальным. Сегодня скорость работы компьютера, наряду с этим параметром, определяется и количеством ядер, и скоростью реакции/обработки данных в других частях системы.
В процессе изготовления процессоры тестируются в различных режимах, при различных температурах и давлении. В результате тестов определяется максимальная рабочая тактовая частота, которая и стоит на маркировке. Но это не самое большое ее значение, существует такое понятие, как разгон процессора, при котором тактовая частота намного возрастает.
Производство многоядерных процессоров решило еще одну проблему: уменьшение температуры процессора. С увеличением тактовой частоты повышалось выделение тепла процессором, что вело к перегреву и сбоям в работе. Многоядерные процессоры позволили при невысоких частотах увеличить быстродействие. Многие современные модели при неполной загрузке могут временно понижать тактовую частоту, сокращая энергопотребление и выделение тепла. За это время процессор успевает остывать, что ведет к снижению оборотов вентиляторов, уменьшению потребления электроэнергии и понижению шумов (на высоких оборотах вентиляторы «звучат» достаточно громко).
Для игровых компьютеров не меньшую роль играет тактовая частота видеокарты. Тут имеется прямая зависимость – чем выше этот параметр, тем быстрее идет прорисовка готовых пикселей и выборка текстурных данных. Но устанавливать высокоскоростную видеокарту и иметь низкоскоростной процессор и ОЗУ небольшого объема не имеет смысла. Параметры всех этих устройств должны быть сбалансированы. Только в этом случае компьютер будет работать с высокой скоростью и без сбоев.
Классификация
Стоимость процессора напрямую зависит от его производительности, поэтому ее можно принять как основной параметр для классификации.
До $100 – двух-ядерные процессоры, достаточные для игр, в которых не требуется обсчет сцен с большим воличеством объектов на экране, для быстрой обработки не очень сложных математических расчетов.
$100-$200 – двух или четырех-ядерные процессоры, достаточные для большинства игр, программ для сложных инженерных расчетов, 3D моделирования, обработки больших объемов данных в MS Office и аналогах.
$200-$250 – четырех ядерные процессоры, более быстрые версии процессоров до $200.
Более $300 – шести-ядерные процессоры, для любых игр и программ требующих сложных расчетов.
Технические характеристики
Тактовая частота
Важный показатель, определяющий число операций, которые производятся процессором в единицу времени (за 1 секунду). Тактовая частота измеряется в ГГц (гигагерцы). Например, процессор с частотой в 1,8 ГГц способен обработать 1 миллиард и 800 миллионов операций в 1 секунду. Это значит, чем выше частота, тем мощнее процессор вы получите. Поэтому советуем при выборе в первую очередь ориентироваться на данную характеристику.
Кэш-память
Кэш является еще одной важной технической характеристикой процессора, определяющая скорость, с которой микропроцессор обращается к ОЗУ. Кэш-память помогает улучшать производительность процессора, благодаря быстрой обработке необходимых данных, загружаемых из кэша, а не из оперативной памяти компьютера
Кэш-память может иметь три уровня:
- Первый уровень (L1). Это самый начальный уровень кэша, который имеет небольшой объем, но высокую скорость. Размер кэш-памяти может составлять 8 – 128 Кб.
- Второй уровень (L2). Это средний уровень кэша, более объемный и менее скоростной. Размер кэша составляет 128 Кб – 12,28 Мб.
- Третий уровень (L3). Это последний уровень кэша, наиболее медленный и объемный. Размер такой памяти составляет 0 Кб – 16,38 Мб. Третий уровень кэша может содержаться только в определенных моделях процессоров, а может и вовсе отсутствовать.
Количество ядер
Несмотря на количество ядер, некоторые программы работают быстрее с обычным процессором. Если развитие тактовой частоты имеет определенные рамки, то увеличение количества ядер процессора происходит постоянно. Что определяет количество ядер в процессоре? Оно влияет на быстродействие ПК в целом, иными словами, показывает, какое количество программ может работать одновременно в определенный промежуток времени. Однако стоит помнить, что некоторые программы могут быть ориентированы только на конкретное количество ядер, а это значит, что если процессор имеет 2 ядра, а программа использует только 1 ядро, тогда другое ядро задействовано не будет. Если вы используете ПК, ноутбук, нетбук, а также планшет для работы, учебы, а также для выхода в интернет, в таком случае 2-х ядерного процессора вполне достаточно. Если вы планируете устанавливать на компьютер игры или обрабатывать объемные видео- и фотофайлы, в таком случае выбирайте 4-х ядерные и выше процессоры.
Выбирайте процессоры, которые построены на современных ядрах. Они более оптимизированы и поэтому работают быстрее. Кроме того они не нагреваются и обладают другими плюсами.
Тепловыделение
Параметр тепловыделения определяет уровень нагрева процессора в рабочем состоянии, а также необходимую систему охлаждения. Единицы измерения тепловыделения – Вт (ваты). Показатель тепловыделения может составить от 10 до 160 Вт.
Сокет
Это небольшой разъем, предназначенный для монтажа процессора в материнской плате. Поэтому при выборе процессора, ориентируйтесь на этот параметр. Он должен быть идентичным сокету материнской платы.
Частота шины
Это показатель скорости, определяющий быстроту обмена информации с видеоускорителем, оперативной памятью и периферийным оборудованием. Кроме того вы должны учитывать пропускную способность, которая влияет на скорость. Единицы измерения частоты шины — ГГц (гигагерцы).
Технический процесс
Данный параметр показывает габариты элементов-полупроводников, которые входят в состав внутренних схем процессора. Чем менее габаритные транзисторные соединения используются в схемах, тем мощнее процессор вы получите. К сожалению, данная характеристика не маркируется в прайсовых листах для рядовых потребителей, поэтому ее следует уточнять отдельно у продавца-консультанта.
При выборе процессора стоит учитывать не только основные технические характеристики, предложенные производителями, но и результаты тестов, проводимых независимыми экспертами. Например, одинаковые процессоры могут выдавать разные результаты тестирования, с применением различных типов нагрузок при работе с одинаковыми программами.
Чтобы определить, какой процессор станет лучшим вариантом именно для вас, стоит решить для каких целей он будет использован.
Процессоры для рабочих домашних и офисных ПК, ноутбуков и нетбуков должны быть оснащены 2-мя ядрами, а также иметь высокую тактовую частоту. Для геймерских ПК стоит выбирать процессоры, имеющие самую современную архитектуру, высокопроизводительный объем кэша, хорошую тактовую частоту и большое количество ядер.
Немного матчасти
ОЗУ, как называют оперативку в информатике, предназначена для хранения программного кода запущенных приложений, а также входных, промежуточных и выходных данных.
Без этого компонента компьютер попросту не запустится, так как не сможет «запомнить» даже простейшую операционную систему – даже такого «мамонта» как MS DOS.
Фактически, чем больше объем оперативки, тем больше программ одновременно может запустить пользователь (или одну ресурсоемкую, которая не будет работать на слабом компе).
В качестве примера могу привести свежие версии Adobe Photoshop, в числе минимальных системных требований которых, наличие 4 Гб оперативки. И это к слову, сегодня не самый большой объем ОЗУ, как и не самая «жадная до ресурсов» программа.
Среди «условно-нейтральных» особо хочу отметить браузер Google Chrome и почти все прочие браузеры на движке Chromium. Они, хотя и не выдвигают к компьютеру каких-либо особых требований по поводу объема оперативки, фактически «отжирают» солидный кусок, ущемляя тем самым все прочие программы.
Теоретически, тактовая частота ОЗУ влияет на производительность компьютера в целом – чем она выше, тем быстрее обрабатываются данные, и соответственно, выполняются команды пользователя.
На практике же, производительность системы зависит в том числе и от всех прочих компонентов – пропускной способности системной шины, видеокарты, процессора и т.д. Поэтому не факт, что оперативка будет работать на максимальных частотах, которые указаны в ее характеристиках, хотя и может это делать.
Впрочем, если правильно подобрать все детали, чтобы они соответствовали друг другу по параметрам, проблем с понижением частоты не возникнет. Поэтому если вы решили купить или собрать самостоятельно новый комп, советую ориентироваться на стандарт DDR4, как на самый современный и мощный.
Конечно, комплектующие, рассчитанные на работу с DDR3, как и сами модули памяти, обойдутся дешевле. Но так как у разных поколений оперативки разная тактовая частота, предыдущее поколение уже не соответствует запросам многих игр и программ.
Как увеличить тактовую частоту процессора
Перед выпуском продукции каждый уважающий себя производитель тестирует её и определяет функциональные возможности. Что касается процессоров, то, прежде чем попасть на прилавок магазина, они проходят экстремальные испытания в условиях с повышенным напряжением и температурой. По окончанию теста производитель определяет максимальные частоты. Однако в ходе испытания не все кристаллы тестируются, а сам изготовитель оставляет запас прочности, равный 10-15% от возможностей изделия. Поэтому по тактовой частоте у большинства процессоров есть запас, который составляет 15% и даже больше.
Увеличение тактовой частоты, в рамках возможностей процессора, называют разгоном. Популярность этой процедуры полностью обоснована: у пользователя есть возможность «заставить» работать процессор быстрее и сделать компьютер мощнее и продуктивнее без затрат. Если множитель разблокирован заводом-изготовителем, то разгон выполняется путем его увеличения. Изменяя значение множителя, пользователь воздействует на тактовую частоту ЦП без влияния на работу других компонентов. Если множитель заблокирован, то разгон может выполняться путем повышения частоты шины процессора, но такой способ доступен не всегда.
Обычно разгон выполняется через настройки BIOS. Например, на картинке внизу показаны настройки BIOS, в которых можно изменить частоту шины процессора и его множитель. Редактируя эти параметры, пользователь может управлять итоговой частотой CPU.
Но, у разгона есть и ряд недостатков. Так, с увеличением частоты процессора растет его температура и снижается стабильность работы. Если за этими параметрами не следить, то процессор может перегреваться и вызывать перезагрузку компьютера. Поэтому при выполнении разгона необходимо выполнять тщательное тестирование, для того чтобы определить с какими настройками компьютер сможет работать длительное время без перегрева или вылетов.
Серия
Процессоры одного производителя с идентичной архитектурой и близкой производительностью объединяют в серии, это отражено в названии процессора. CPU одной серии в основном отличаются тактовой частотой работы.
Актуальные серии процессоров на 2019 год:
- Intel – Core i3, Core i5, Core i7, Core i9 (8 поколение, архитектура Coffee Lake);
- AMD – Ryzen 3, Ryzen 5, Ryzen 7, Ryzen 9, Ryzen Threadripper (архитектура Zen).
Актуальные процессоры на 2019 год:
- до 80$ – Intel Celeron G4900, AMD Athlon 200GE;
- до 150$ – Intel Core i3-8100, AMD Ryzen 3 2200G;
- до 310$ – Intel Core i3-8350K, Intel Core i5-7600K, Intel Core i5-9400F, AMD Ryzen 5 1600;
- до 420$ – Intel Core i7-7700K, Intel Core i7-8700, AMD Ryzen 5 3600, AMD Ryzen 7 1700;
- до 650$ – Intel Core i7-9700K, Intel Core i9-9900K, AMD Ryzen 9 3900X.
Возможны и специфические решения исходя из поставленных задач.
Если речь идет о геймерском ПК, то лучше остановиться на Core i5-9600K или Ryzen 5 3600.
Для инженерных расчетов оптимальны Core i3-7350K или Athlon II X4 (программа AutoCAD), Core i7-7700K или Ryzen 7 1800X (программы Revit, Autodesc Inventor).
Профессиональные монтажеры по достоинству оценят Core i7-8700K, Core i7-7820X, Core i9-7940X, Ryzen 7 2700X, Ryzen Threadripper 1950X.
Редуктор — координирование данных 4В5В
Протоколы, использующие код NRZ, чаще всего дополняют кодированием данных 4B5B. В отличие от кодирования сигналов, которое использует тактовую частоту и обеспечивает переход от импульсов к битам и наоборот, кодирование данных преобразует одну последовательность битов в другую.
В коде 4B5B используется пяти-битовая основа для передачи четырех-битовых информационных сигналов. Пяти-битовая схема дает 32 ((два в пятой степени) двухразрядных буквенно-цифровых символа, имеющих значение в десятичном коде от 00 до 31. Для данных отводится четыре бита или 16 (два в четвертой степени) символов.
Четырех-битовый информационный сигнал перекодируется в пяти-битовый сигнал в кодере передатчика. Преобразованный сигнал имеет 16 значений для передачи информации и 16 избыточных значений. В декодере приемника пять битов расшифровываются как информационные и служебные сигналы. Для служебных сигналов отведены девять символов, семь символов — исключены.
Исключены комбинации, имеющие более трех нулей (01 &— 00001, 02 &— 00010, 03 &— 00011, 08 &— 01000, 16 &— 10000). Такие сигналы интерпретируются символом V и командой приемника VIOLATION — сбой. Команда означает наличие ошибки из-за высокого уровня помех или сбоя передатчика. Единственная комбинация из пяти нулей (00 &— 00000) относится к служебным сигналам, означает символ Q и имеет статус QUIET — отсутствие сигнала в линии.
Кодирование данных решает две задачи — синхронизации и улучшения помехоустойчивости. Синхронизация происходит за счет исключения последовательности более трех нулей. Высокая помехоустойчивость достигается контролем принимаемых данных на пяти-битовом интервале.
Цена кодирования данных — снижение скорости передачи полезной информации. В результате добавления одного избыточного бита на четыре информационных, эффективность использования полосы частот в протоколах с кодом MLT-3 и кодированием данных 4B5B уменьшается соответственно на 25%.
При совместном использовании кодирования сигналов MLT-3 и данных 4В5В четвертая передача работает фактически как третья — 3 бита информации на 1 герц несущей частоты сигнала. Такая схема используется в протоколе TP-PMD.
Увеличение частоты путем разгона
Взаимодействуя с платой оперативной памяти, процессор обычно тратит больше одного такта. Этот показатель может быть увеличен искусственно, то есть в результате так называемого «разгона», но, выбрав такой путь, нужно знать о некоторых ограничениях:
- процессор начинает потреблять заметно большее количество энергии, и с этим моментом может не справиться установленный и эксплуатируемый блок питания, поэтому стоит приобрести более эффективную модель;
- в результате «разгона» увеличивается количество отдаваемой энергии кристаллом, то есть и он, и другие комплектующие будут нагреваться быстрее (справиться с последствиями перегрева поможет только эффективная система охлаждения);
- если увеличивается объем подаваемой электроэнергии, обязательно возникают электромагнитные помехи, в частности, в работе шин данных (это может привести к уменьшению количества передаваемых данных).
Как узнать изменить частоту процессора
Вопрос, как узнать частоту ЦП, фактически уже рассмотрен. Даже обычные средства Windows позволяют делать это без каких бы то ни было проблем. Однако, большинство пользователей волнуют более насущные вопросы: им нужно выжать из своих ПК максимум производительности.
Поэтому работа в режиме «турбо» у большинства ПК давно уже стала практически штатным режимом. Работа современных систем охлаждения позволяет без особых проблем увеличивать значение частоты на 20-30% от штатной, при этом не опасаясь за судьбу своего ЦП. Именно поэтому многие пользователи увеличивают быстродействие своих ЦП всеми доступными методами: от изменений планов быстродействия и электропитания до аппаратного разгона процессора.
Рассмотрим, как увеличить тактовую частоту ЦП. Поскольку её итоговое значение получается в виде произведения величины FSB на множитель, есть два пути: увеличение FSB, либо увеличение множителя.
Однако, оба имеют свои ограничения. Величина множителя изначально заблокирована производителем на каком-то уровне, незначительно превышающем максимальное значение. Например, множители у упомянутого выше i7-4700 имеют следующие значение:
- штатный – 23;
- минимальный – 6;
- турбо – 33;
- максимальный – 35.
То есть, максимальное значение частоты, с которой может работать данный ЦП, составляет 3500 МГц, однако, производитель приводит не эту величину, а немного меньшую (3300 МГц), то есть максимальный разгон данного процессора по множителю составит всего лишь 6%.
Ограничение по FSB обусловлено не только физическими процессами в ЦП, но и поведением материнки и всего остального «обвеса»: памяти, видеокарты, USB и т.д., поскольку каждое из этих устройств также ориентируется на работу, с которой работает FSB.
Реальный рост скорости ЦП при увеличении FSB может доходить до 50%. Однако, это экстремальные случаи, требующие не только экстремальных систем охлаждения, но и настройки задержек в работе всех перечисленных устройств. Выигрыш быстродействия здесь получится только в том случае, если эти задержки не будут влиять на производительность.
Непосредственно само увеличение частоты процессора может быть осуществлено несколькими методами:
- «мягкими» программными – при помощи изменения плана электропитания процессора (обычно, при этом меняется только множитель и все процессы по изменению частоты происходят автоматически);
- «жёсткими» программными – при помощи специальных программ по тонкой настройке ЦП, работающим под Windows; например, MS Afterburner и ему подобные;
- аппаратными – разгон процессора при помощи настроек BIOS.
Последний способ наиболее предпочтителен, поскольку именно он позволяет управлять и FSB и множителем. Кроме того, данное решение даёт возможность увеличивать напряжение питания ЦП, если разгон при обычном способе не приносит результата. При этом пользуются простым правилом: постепенно увеличивают FSB на 2-3% и следят за стабильностью системы. Если система не даёт сбоев, переходят на повышенную частоту, если сбои есть, повышают напряжение.
Увеличение частоты прекращают на последнем её стабильном значении, при котором повышение напряжения не опасно для ЦП (не более +10% от номинального значения).
Решение вопроса, как уменьшить частоту, состоит в противоположных действиях: обычно при этом убирается весь разгон, а ПК переводится на план электропитания, имеющий минимальное энергопотребление. При этом система сама понизит частоту ЦП до нужных значений.
Подведем итоги
А теперь давайте рассуждать логично. И AMD и Intel за последние несколько лет неплохо так выровняли свои показатели в плане производительности. Оба чипа построены для новейших платформ Ryzen+ (AM4) и Coffee Lake (s1151v2) и имеют отличный разгонный потенциал, а также задел на будущее.
Если для вас первостепенной задачей является получение высокого FPS в современных игровых проектах, то «синяя» платформа здесь выглядит более оптимальным решением.
Вариант от AMD при прочих равных выглядит более «всеядным» и универсальным, да и ядер с потоками у него больше, а значит открываются новые перспективы вроде того же стриминга, который так популярен на Youtube.
Надеемся, теперь вы понимаете, в чем разница между частотой и количеством вычислительных ядер, и в каких случаях переплата за потоки оправдана.
На этой ноте закончим, не забывайте подписываться на обновления блога, пока пока.