Уровни модели osi и сетевые протоколы

Содержание:

Литература

  • А. Филимонов. Построение мультисервисных сетей Ethernet. — М.: BHV, 2007. ISBN 978-5-9775-0007-4.
  • Руководство по технологиям объединённых сетей. 4-е изд. — М.: Вильямс, 2005. ISBN 5-8459-0787-X.
  • Интернет ресурс: сервер :
    • Этот сервер, содержащий сведения по сетевым технологиям начал формироваться в 1997 году. Он частично создан на средства, выделенные по проектам РФФИ (99-07-90102 и 01-07-90069).
    • В основу материалов легли тексты книг:
      • «Протоколы и ресурсы Интернет» (Радио и связь, М. 1996),
      • «Сети Интернет. Архитектура и протоколы» (Сиринъ, М. 1998),
      • «Протоколы Интернет. Энциклопедия» («Горячая линия — Телеком», М. 2001, 1100 стр.),
      • «Протоколы Internet для электронной торговли» («Горячая линия — Телеком», М. 2003, 730 стр.),

которые базировались на двух курсах, читаемых студентам[значимость факта?] кафедр «Телекоммуникационные сети и системы» (факультет МФТИ ФРТК), «Интеграции и менеджмента» (факультет МФТИ ФОПФ) и «Информатики» (факультет НаноБиоИнфоКогни МФТИ) — «Каналы и сети передачи данных», «Протоколы Интернет».

Канальный уровень

Канальный уровень (Link layer) описывает, каким образом передаются пакеты данных через физический уровень, включая кодирование (то есть специальные последовательности бит, определяющих начало и конец пакета данных). Канальный уровень иногда разделяют на 2 подуровня — LLC и MAC. Кроме того, канальный уровень описывает среду передачи данных (будь то коаксиальный кабель, витая пара, оптическое волокно или радиоканал), физические характеристики такой среды и принцип передачи данных (разделение каналов, модуляцию, амплитуду сигналов, частоту сигналов, способ синхронизации передачи, время ожидания ответа и максимальное расстояние).

Соответствие модели OSI и других моделей сетевого взаимодействия

Поскольку наиболее востребованными и практически используемыми стали протоколы (например TCP/IP), разработанные с использованием других моделей сетевого взаимодействия, далее необходимо описать возможное включение отдельных протоколов других моделей в различные уровни модели OSI.

Семейство TCP/IP

Семейство TCP/IP имеет три транспортных протокола: TCP, полностью соответствующий OSI, обеспечивающий проверку получения данных; UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмен датаграммами между приложениями, не гарантирующий получения данных; и SCTP, разработанный для устранения некоторых недостатков TCP, в который добавлены некоторые новшества. В семействе TCP/IP есть ещё около двухсот протоколов, самым известным из которых является служебный протокол ICMP, используемый для внутренних нужд обеспечения работы; остальные также не являются транспортными протоколами.

Семейство IPX/SPX

В семействе IPX/SPX порты появляются в протоколе сетевого уровня IPX, обеспечивая обмен датаграммами между приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с OSI.

В качестве адреса хоста ICX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

Уровни OSI

Для наглядности процесс работы сети принято разделять на 7 уровней, на каждом из которых работает своя группа протоколов.

Для выполнения разных задач имеется несколько протоколов, которые занимаются обслуживанием систем, например, стек TCP/IP. Давайте здесь внимательно посмотрим на то, каким образом информация с одного компьютера отправляется по локальной сети на другой комп.

Задачи компьютера ОТПРАВИТЕЛЯ:

  • Взять данные из приложения
  • Разбить их на мелкие пакеты, если большой объем
  • Подготовить к передаче, то есть указать маршрут следования, зашифровать и перекодировать в сетевой формат.

Задачи компьютера ПОЛУЧАТЕЛЯ:

  • Принять пакеты данных
  • Удалить из него служебную информацию
  • Скопировать данные в буфер
  • После полного приема всех пакетов сформаровать из них исходный блок данных
  • Отдать его приложению

Для того, чтобы верно произвести все эти операции и нужен единый свод правил, то есть эталонная модель OSI.

Вернемся у к уровням OSI. Их принято отсчитывать в обратном порядке и в верхней части таблицы располагаются сетевые приложения, а в нижней — физическая среда передачи информации. По мере того, как данные от компьютера спускаются вниз непосредственно к сетевому кабелю, протоколы, работающие на разных уровнях, постепенно их преобразовывают, подготавливая к физической передаче.

Разберем их подробнее.

6. Уровень представления (Presentation Layer)

Переводит эти данные на единый универсальный язык. Дело в том, что каждый компьютерный процессор имеет собственный формат обработки данных, но в сеть они должны попасть в 1 универсальном формате — именно этим и занимается уровень представления.

Ваше мнение — WiFi вреден?

Да
24.09%

Нет
75.91%

Проголосовало: 3051

5. Сеансовый уровень (Session Layer)

У него много задач.

  1. Установить сеанс связи с получателем. ПО предупреждает компьютер-получатель о том, что сейчас ему будут отправлены данные.
  2. Здесь же происходит распознавание имен и защита:
    • идентификация — распознавание имен
    • аутентификация — проверка по паролю
    • регистрация — присвоение полномочий
  3. Реализация того, какая из сторон осуществляет передачу информации и как долго это будет происходить.
  4. Расстановка контрольных точек в общем потоке данных для того, чтобы в случае потери какой-то части легко было установить, какая именно часть потеряна и следует отправить повторно.
  5. Сегментация — разбивка большого блока на маленькие пакеты.

4. Транспортный уровень (Transport Layer)

Обеспечивает приложениям необходимую степень защиты при доставке сообщений. Имеется две группы протоколов:

  • Протоколы, которые ориентированы на соединение — они отслеживают доставку данных и при необходимости запрашивают повторную отправку при неудаче. Это TCP — протокол контроля передачи информации.
  • Не ориентированные на соединение (UDP) — они просто отправляют блоки и дальше не следят за их доставкой.

3. Сетевой уровень (Network Layer)

Обеспечивает сквозную передачу пакета, рассчитывая его маршрут. На этом уровне в пакетах ко всей предыдущей динформации, сформированной другими уровнями, добавляются IP адреса отправителя и получателя. Именно с этого момент пакет данных называется собственно ПАКЕТОМ, у которого есть IP адреса (IP протокол — это протокол межсетевого взаимодействия).

2. Канальный уровень (Data Link Layer)

Здесь происходит передача пакета в пределах одного кабеля, то есть одной локальной сети. Он работает только до пограничного маршрутизатора одной локальной сети. К полученному пакету канальный уровень добавляет свой заголовок — MAC адреса отправителя и получателя и в таком виде блок данных уже называется КАДРОМ.

При передачи за пределы одной локальной сети пакету присваивается MAC не хоста (компьютера), а маршрутизатора другой сети. Отсюда как раз появляется вопрос серых и белых IP, о которых шла речб в статье, на которую была выше дана ссылка. Серый — это адрес внутри одной локальной сети, который не используетс яза ее пределами. Белый — уникальный адрес во всем глобальном интернете.

При поступлении пакета на пограничный роутер IP пакета подменяется на IP этого роутера и вся локальная сеть выходит в глобальную, то есть интернет, под одним единственным IP адресом. Если адрес белый, то часть данных с IP адресом не изменяется.

1. Физический уровень (Transport layer)

Отвечает за преобразование двоичной информации в физический сигнал, который отправляется в физический канал передачи данных. Если это кабель, то сигнал электрический, если оптоволоконная сеть, то в оптический сигнал. Осуществляется это преобразование при помощи сетевого адаптера.

Модель TCP IP

Модель TCP/IP немного отличается от модели OSI, если говорить конкретней в данной модели объединили некоторые уровни модели OSI и их здесь всего 4:

  • Прикладной;
  • Транспортный;
  • Сетевой;
  • Канальный.

На картинке представлено отличие двух моделей, а также еще раз показано на каких уровнях работают всем известные протоколы.

Говорить о сетевой модели OSI и конкретно про взаимодействие компьютеров в сети можно долго и в рамках одной статьи это не уместить, да и будет немного не понятно, поэтому здесь я попытался представить как бы основу этой модели и описание всех уровней. Главное понимать, что все это действительно так и файл, который Вы отправили по сети проходит просто «огромный» путь, перед тем как попасть к конечному пользователю, но это происходит на столько быстро, что Вы этого не замечаете, во многом благодаря развитым сетевым технологиям.

Надеюсь все это, Вам поможет понимать взаимодействие сетей.

Нравится1Не нравится

Обнаружение и исправление ошибок

Самый простой способ это обнаружить ошибку. Например, с помощью контрольной суммы или какого-либо другого алгоритма. Если у нас технология канального уровня использует обнаружение технических ошибок, то кадр в котором произошла ошибка, просто отбрасывается. Попыток восстановить данные не производится. 

Более сложный механизм — это исправление ошибок. Чтобы иметь возможность исправить ошибку, нужно добавить к данным дополнительную информацию, с помощью которой мы сможем обнаружить ошибки и восстановить правильные данные. Для этого используются специальные коды исправляющие ошибки. 

Другой вариант исправление ошибок при передаче данных — это повторная отправка тех кадров в которых произошла ошибка. Он используется совместно с обнаружением ошибок, когда отправитель передает данные получателю, получатель обнаруживает ошибку в данных, но вместо того чтобы исправить ошибку в передаваемых данных, отправитель передает эти данные еще раз. 

Давайте рассмотрим, как реализуется повторная отправка сообщений. Предположим, что у нас есть отправитель и получатель и отправитель передал получателю некоторое сообщение. Получатель получил это сообщение проверил его на корректность убедился, что данные переданы правильно и после этого передает отправителю подтверждение о получении. Отправитель передает следующее сообщение предположим, что здесь произошла ошибка, получатель эту ошибку обнаружил или сообщение вообще не дошло до получателя, поэтому получатель не может передать подтверждение о получении этого сообщения. 

Отправитель, после того как, отправил сообщение запустил таймер ожидания подтверждения. По истечению времени ожидания  подтверждение не пришло, отправитель понял, что при передаче сообщения произошла проблема и нужно повторно передать то же самое сообщение.

В этот раз сообщение успешно дошло до получателя и он снова передает подтверждение. После этого отправитель может передавать следующий кадр. 

Есть два варианта метода повторной отправки сообщения. Схему которую мы рассмотрели называется с остановкой и ожиданием. Отправитель передает фрейм и останавливается ожидая подтверждение. Следующий кадр передается только после того, как пришло подтверждение о получении предыдущего сообщения. Такой метод используются в технологии канального уровня Wi-Fi. 

Другой вариант метода повторной отправки это скользящее окно. В этом случае отправитель передает ни одно сообщение, а сразу несколько сообщений и количество сообщений, которые можно передать не дожидаясь подтверждения называется размером окна. Здесь получатель передает подтверждение не для каждого отдельного сообщения, а для последнего полученного сообщения. Такой метод лучше работает на высокоскоростных каналах связи. Сейчас нет технологии канального уровня, которая использует этот метод, но он используется на транспортном уровне в протоколе TCP. 

У нас есть несколько вариантов, что можно делать с ошибками. Можно их обнаруживать, исправлять с помощью кодов исправления ошибок, либо с помощью повторной доставки сообщений. Также мы можем исправлять и обнаруживать ошибки на канальном уровне, либо на вышестоящих уровнях. 

Сетевые модели OSI и IEEE Project 802

Работа сети заключается в передаче данных от одного компьютера к другому. В этом процессе можно выделить несколько отдельных задач:

  • распознать данные;

  • разбить данные на управляемые блоки;

  • добавить информацию к каждому блоку, чтобы:

  • указать местонахождение данных;

  • указать получателя;

  • добавить информацию синхронизации и информацию для проверки ошибок;

  • поместить данные в сеть и отправить их по заданному адресу.

Сетевая операционная система при выполнении всех задач следует строгому набору процедур. Эти процедуры называются протоколами или правилами поведения. Протоколы регламентируют каждую сетевую операцию.
Стандартные протоколы позволяют программному и аппаратному обеспечению различных производителей нормально взаимодействовать. Существует два главных набора стандартов: модель OSI и ее модификация, называемая Project 802. Чтобы изучить техническую сторону функционирования сетей, необходимо иметь четкое представление об этих моделях.

Другие сетевые модели

Важное значение с точки зрения организации сетей имеет также модель DoD (Department of Defense — Министерство обороны США), так как в основе протоколов TCP/IP лежит не модель OSI, а именно эта модель. Поскольку модель DoD во многом совпадает с моделью OSI, тот факт, что она является фундаментом протоколов TCP/IP, может привести к некоторой путанице при изучении модели OSI

Верхние уровни модели DoD не совпадают с верхними уровнями модели OSI, поэтому в разных книгах можно встретить различные описания порядка расположения протоколов в модели OSI. Но здесь необходимо прежде всего учитывать, что фактически знание того, где должен быть указанный протокол модели OSI, необходимо в основном для успешной сдачи экзаменов; а на практике важнее всего понимание назначения каждого уровня модели.

Модели DoD и OSI

Модели OSI и DoD позволяют наглядно представить процесс сетевого взаимодействия, а компания Cisco применяет в своей работе иерархическую межсетевую модель, которая представляет собой многоуровневое отображение топологического проекта объединенной сети. Эта модель разработана в целях максимального повышения производительности; в то же время она обеспечивает оптимальную отказоустойчивость. Применение этой модели позволяет упростить конструкцию сети путем распределения функций по уровням сетевого проекта. Очевидным недостатком данной модели в сетях небольших и средних размеров является высокая стоимость проекта, но если задача состоит в создании высокопроизводительной, масштабируемой, резервируемой объединенной сети, то применение такого подхода является одним из наилучших способов реализации в проекте поставленных целей.

Иерархическая межсетевая модель Cisco состоит из трех уровней:

  1. Уровень ядра сети. Этот уровень объединенной сети соответствует опорной сети. Поскольку опорная сеть играет такую важную роль, любые серьезные нарушения в ее работе скорее всего будут заметны для всех, кто использует эту объединенную сеть. Кроме того, поскольку скорость здесь играет очень важную роль (в связи с огромным объемом трафика, который проходит по опорной сети), на этом уровне практически не должны быть реализованы функции, требующие значительных ресурсов маршрутизации или коммутации. Иными словами, маршрутизация, обработка списков доступа, сжатие, шифрование и все прочие функции, требующие больших затрат ресурсов, должны быть выполнены до того, как пакет поступит в ядро сети.
  2. Распределительный уровень. Этот уровень занимает промежуточное положение между уровнем ядра сети и уровнем доступа. Клиенты не взаимодействуют непосредственно с этим уровнем, но на нем выполняется основная часть функций обработки передаваемых ими пакетов. На этом уровне выполняется также основная часть вспомогательных функций. В частности, на нем функционируют службы маршрутизации, обеспечения качества обслуживания (Quality of Service — QоS), проверки списков доступа, шифрования, сжатия и трансляции сетевых адресов (Network Address Translation — NAT).
  3. Уровень доступа. На этом уровне пользователям предоставляется доступ к локальным сегментам. Характерной особенностью уровня доступа является применение соединений локальной сети, обычно в сетевой среде небольшого масштаба (такой как отдельное здание). Иными словами, именно на этом уровне происходит подключение клиентов к сети. Обычно на уровне доступа выполняется коммутация Ethernet и другие основные функции.

Пример практического применения этой модели приведен на рис.10.


Рис.10. Иерархическая межсетевая модель Cisco.

Методы выделения кадров

Чтобы определить, где в потоке бит начинаются и заканчиваются отдельные frame, были придуманы следующие методы: 

  • Указание количества байт; 
  • Вставка байтов (byte stuffing) и битов (bit stuffing);
  • Средства физического уровня. 

Указатель количества байт

Наипростейший способ определить, где начинается и заканчивается кадр — добавлять длину этого кадра в начало кадра. Например, на картинке ниже показано 3 кадра выделенных разным цветом. В начале каждого кадра указано количество байт. Синим цветом — 6, желтым — 8, зеленым — 4. 

Этот метод прост в реализации,  но есть недостаток, искажение данных при передаче по сети. Например, при передаче первого кадра появилось искажение и вместо длины кадра шесть байт,  получатель получил семь байт. 

Получатель посчитает, что семь это длина кадра. Далее идет длина следующего кадра. Здесь она два байта, затем длина следующего кадра семь. Если у нас произошла хоть одна ошибка, то будет нарушена последовательность чтений. Следовательно такой метод на практике не годится к  применению. 

Вставка byte и bit

Чтобы определить начало и конец кадра, в начале и конце каждого кадра используют специальные последовательности байт или бит. Вставка байтов применялась в протоколах BSC компании IBM, в котором отправлялись обычные текстовые символы. 

Перед передачей каждого фрейма добавлялись байты DLE STX (start of text), а после окончания передачи фрейма DLE ETX (end of text). Проблема может возникнуть в том, что в данных тоже может встретиться точно такая же последовательность. 

Чтобы отличать последовательность, которая встречается в данных от управляющих символов используются Escape последовательности. В протоколе BSC это тоже последовательность символов DLE (data link escape). Если какая-то последовательность управляющих символов встречается в данных перед ними добавляются escape последовательности DLE, чтобы протокол понимал, что в реальности это данные, а не управляющие символы. 

Вставка битов применяется в более современных протоколах, таких как HDLC и PPP. Здесь перед началом и концом каждого кадра добавляется последовательность бит состоящая из 01111110. Может возникнуть проблема, если в данных встречаются подряд идущие 6 или более единиц. Чтобы решить эту задачу в данные, после каждых пяти последовательно идущих 1 добавляется 0. Затем, как получатель прочитал 5 последовательно идущих 1 и встретил 0, то он, этот 0 игнорирует. 

Средства физического уровня

Другой вид определения начала и конца кадра, это использование средств физического уровня и он применяется в технологии Ethernet. В первом варианте технологии ethernet использовалась преамбула — это последовательность данных, которая передается перед началом каждого кадра. Она состоит из 8 байт. Первые семь байт состоят из чередующихся 0 и 1: 10101010. Последний байт содержит чередующиеся 0 и 1, кроме двух последних бит в котором две единицы. И именно такая последовательность говорит, что начинается новый кадр. 

В более старых версиях используется избыточное кодирование, позволяющее определить ошибки, но при этом не все символы являются значащими. В технологии Fast Ethernet применили эту особенность кода и используют символы, которые не применяются для представления данных в качестве сигналов о начале и конце кадра. 

Перед отправкой каждого кадра передаются символы J (11000) и K (10001), а после окончания отправки кадра передается символ T (01101).

TCP/IP и OSI

TCP/IP ссылается на огромное количество протоколов, описание которых находится в документах под названием RFC. Они находятся в свободном доступе в Интернете. Протоколы и правила были разделены на категории – уровни. Каждый уровень обладает своим набором функций, или сервисов, реализующихся за счет протоколов этого уровня.

Таблица 1.1 Сетевая модель TCP/IP

# TCP/IP(RU) TCP/IP(EN)
4 Приложений Application layer
3 Транспортный Transport layer
2 Интернет Internet layer
1 Канальный (в некоторых источниках Физический) Link layer

Таблица 1.2 Сетевая модель OSI

# OSI(RU) OSI(EN)
7 Приложений Application layer
6 Презентаций Presentation layer
5 Сессий Session layer
4 Транспортный Transport layer
3 Сетевой Network layer
2 Канальный Data Link layer
1 Физический Physical layer

Как сетевой инженер, могу сказать, что важно знать название и порядковый номер каждого уровня. Совет: если вы хотите разбираться в сетях и в сетевом оборудовании, то распечатайте себе обе сетевые модели, представленные выше, и подглядывайте в свои заметки ежедневно

Эти знания помогут вам понять, что означают понятия “коммутатор 2-го уровня”, “коммутатор 3-го уровня” или “L2-канал”, “L3-канал”, а самое главное, – на CCNA экзамене вам точно встретятся вопросы о сетевых моделях.

Таблица 1.3 Пример протоколов каждого уровня

Название уровня Пример протоколов
Приложений HTTP, FTP, SNMP, POP3
Транспортный TCP, UDP
Интернет IP
Физический Ethernet

Модель OSI

Эталонная модель OSI являет собой 7-уровневую сетевую иерархию созданную международной организацией по стандартам (ISO). Представленная модель на рис.1 имеет 2 различных модели:

  • горизонтальная модель на основе протоколов, реализующую взаимодействие процессов и ПО на разных машинах
  • вертикальную модель на основе услуг, реализуемых соседними уровнями друг другу на одной машине

В вертикальной — соседние уровни меняются информацией с помощью интерфейсов API. Горизонтальная модель требует общий протокол для обмена информацией на одном уровне.

Рисунок — 1

Модель OSI описывает только системные методы взаимодействия, реализуемые ОС, ПО и тд. Модель не включает методы взаимодействия конечных пользователей. В идеальных условиях приложения должны обращаться к верхнему уровню модели OSI, однако на практике многие протоколы и программы имеют методы обращения к нижним уровням.

Физический уровень

На физическом уровне данные представлены в виде электрических или оптических сигналов, соответствующие 1 и 0 бинарного потока. Параметры среды передачи определяются на физическом уровне:

  • тип разъемов и кабелей
  • разводка контактов в разъемах
  • схема кодирования сигналов 0 и 1

Самые распространенные виды спецификаций на этом уровне:

  • EIA-RS-232-C, CCITT V.24/V.28 — параметры несбалансированного последовательного интерфейса
  • EIA-RS-422/449, CCITT V.10 — параметры сбалансированного последовательного интерфейса
  • IEEE 802.3 — Ethernet
  • IEEE 802.5 — Token ring

На физическом уровне нельзя вникнуть в смысл данных, так как она представлена в виде битов.

Канальный уровень

На этом канале реализована транспортировка и прием кадров данных. Уровень реализует запросы сетевого уровня и использует физический уровень для приема и передачи. Спецификации IEEE 802.x делят этот уровень на два подуровня управление логическим каналом (LLC) и управление доступом к среде (MAC). Самые распространенные протоколы на этом уровне:

Также на этом уровне реализуется обнаружение и исправление ошибок при передаче. На канальном уровне пакет помещается в поле данных кадра — инкапсуляция. Обнаружение ошибок возможно с помощью разных методов. К примеру реализация фиксированных границ кадра, или контрольной суммой.

Сетевой уровень

На этом уровне происходит деление пользователей сети на группы. Здесь реализуется маршрутизация пакетов на основе MAC-адресов. Сетевой уровень реализует прозрачную передачу пакетов на транспортный уровень. На этом уровне стираются границы сетей разных технологий. Маршрутизаторы работают на этом уровне. Пример работы сетевого уровня показан на рис.2 Самые частые протоколы:

Рисунок — 2

Транспортный уровень

На этом уровне потоки информации делятся на пакеты для передачи их на сетевом уровне. Самые распространенные протоколы этого уровня:

  • TCP — протокол управления передачей
  • NCP
  • SPX
  • TP4

Сеансовый уровень

На этом уровне происходит организация сеансов обмена информацией между оконечными машинами. На этом уровне идет определение активной стороны и реализуется синхронизация сеанса. На практике многие протоколы других уровней включают функцию сеансового уровня.

Уровень представления

На этом уровне происходит обмен данными между ПО на разных ОС. На этом уровне реализовано преобразование информации (кодирование, сжатие и тд) для передачи потока информации на транспортный уровень. Протоколы уровня используются и те, что используют высшие уровни модели OSI.

Прикладной уровень

Прикладной уровень реализует доступ приложения в сеть. Уровень управляет переносом файлов и управление сетью. Используемые протоколы:

  • FTP/TFTP — протокол передачи файлов
  • X 400 — электронная почта
  • Telnet
  • smtp
  • CMIP — управление информацией
  • SNMP — управление сетью
  • NFS — сетевая файловая система
  • FTAM — метод доступа для переноса файлов
  • Главная
  • Защита сети

Общая характеристика модели OSI

https://youtube.com/watch?v=DcV3HY6lFP4%3F

В связи с затянувшейся разработкой протоколов OSI, в настоящее время основным используемым стеком протоколов является TCP/IP, разработанный ещё до принятия модели OSI и вне связи с ней.

К концу 70-х годов в мире уже существовало большое количество фирменных стеков коммуникационных протоколов, среди которых можно назвать, например, такие популярные стеки, как DECnet, TCP/IP и SNA. Подобное разнообразие средств межсетевого взаимодействия вывело на первый план проблему несовместимости устройств, использующих разные протоколы. Одним из путей разрешения этой проблемы в то время виделся всеобщий переход на единый, общий для всех систем стек протоколов, созданный с учетом недостатков уже существующих стеков. Такой академический подход к созданию нового стека начался с разработки модели OSI и занял семь лет (с 1977 по 1984 год). Назначение модели OSI состоит в обобщенном представлении средств сетевого взаимодействия. Она разрабатывалась в качестве своего рода универсального языка сетевых специалистов, именно поэтому её называют справочной моделью.В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представления, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с совершенно определенным аспектом взаимодействия сетевых устройств.

Приложения могут реализовывать собственные протоколы взаимодействия, используя для этих целей многоуровневую совокупность системных средств. Именно для этого в распоряжение программистов предоставляется прикладной программный интерфейс (Application Program Interface, API). В соответствии с идеальной схемой модели OSI приложение может обращаться с запросами только к самому верхнему уровню — прикладному, однако на практике многие стеки коммуникационных протоколов предоставляют возможность программистам напрямую обращаться к сервисам, или службам, расположенных ниже уровней. Например, некоторые СУБД имеют встроенные средства удаленного доступа к файлам. В этом случае приложение, выполняя доступ к удаленным ресурсам, не использует системную файловую службу; оно обходит верхние уровни модели OSI и обращается непосредственно к ответственным за транспортировку сообщений по сети системным средствам, которые располагаются на нижних уровнях модели OSI. Итак, пусть приложение узла А хочет взаимодействовать с приложением узла В. Для этого приложение А обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Но для того, чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни. После формирования сообщения прикладной уровень направляет его вниз по стеку уровню представления. Протокол уровня представления на основании информации, полученной из заголовка сообщения прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию — заголовок уровня представления, в котором содержатся указания для протокола уровня представления машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню, который, в свою очередь, добавляет свой заголовок и т. д. (Некоторые реализации протоколов помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце в виде так называемого концевика.) Наконец, сообщение достигает нижнего, физического, уровня, который, собственно, и передает его по линиям связи машине-адресату. К этому моменту сообщение «обрастает» заголовками всех уровней.

Физический уровень помещает сообщение на физический выходной интерфейс компьютера 1, и оно начинает своё «путешествие» по сети (до этого момента сообщение передавалось от одного уровню другому в пределах компьютера 1). Когда сообщение по сети поступает на входной интерфейс компьютера 2, оно принимается его физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню. Как видно из описания, протокольные сущности одного уровня не общаются между собой непосредственно, в этом общении всегда участвуют посредники — средства протоколов нижележащих уровней. И только физические уровни различных узлов взаимодействуют непосредственно.

Принцип устройства сетевой модели

Сетевая модель OSI имеет семь уровней, иерархически расположенных от большего к меньшему. То есть, самым верхним является седьмой (прикладной), а самым нижним — первый (физический). Модель OSI разрабатывалась еще в 1970-х годах, чтобы описать архитектуру и принципы работы сетей передачи данных

Важно помнить, что данные передаются не только по сети интернет, но и в локальных сетях с помощью проводных или беспроводных соединений

В процессе передачи данных всегда участвуют устройство-отправитель, устройство-получатель, а также сами данные, которые должны быть переданы и получены. С точки зрения рядового пользователя задача элементарна — нужно взять и отправить эти данные. Все, что происходит при отправке и приеме данных, детально описывает семиуровневая модель OSI.

На седьмом уровне информация представляется в виде данных, на первом — в виде бит. Процесс, когда информация отправляется и переходит из данных в биты, называется инкапсуляцией. Обратный процесс, когда информация, полученная в битах на первом уровне, переходит в данные на седьмом, называется декапсуляцией. На каждом из семи уровней информация представляется в виде блоков данных протокола — PDU (Protocol Data Unit).

Рассмотрим на примере: пользователь 1 отправляет картинку, которая обрабатывается на седьмом уровне в виде данных, данные должны пройти все уровни до самого нижнего (первого), где будут представлены как биты. Этот процесс называется инкапсуляцией. Компьютер пользователя 2 принимает биты, которые должны снова стать данными. Этот обратный процесс называется декапсуляция. Что происходит с информацией на каждом из семи уровней, как и где биты переходят в данные мы разберем в этой статье.

Описание уровней сетевой модели

Уровень приложений (7) (прикладной уровень) – это отправная и в то же время конечная точка данных, которые Вы хотите передать по сети. Этот уровень отвечает за взаимодействие приложений по сети, т.е. на этом уровне общаются приложения. Это самый верхний уровень и необходимо помнить это, при решении возникающих проблем.

На этом уровне работают такие протоколы как: HTTP, POP3, SMTP, FTP, TELNET и другие. Другими словами приложение 1 посылает запрос приложению 2 по средствам этих протоколов, и для того чтобы узнать, что приложение 1 послало запрос именно приложению 2, между ними должна быть связь, вот именно протокол и отвечает за эту связь.

Уровень представления (6) – этот уровень отвечает за кодирование данных, для того чтобы их потом можно было передать по сети и соответственно преобразует их обратно, для того чтобы приложение понимало эти данные. После этого уровня данные для других уровней становятся одинаковыми, т.е. без разницы, что это за данные, будь то документ word или сообщение электронной почты.

На этом уровне работают такие протоколы как: RDP, LPP, NDR и другие.

Сеансовый уровень (5) – отвечает за поддержание сеанса между передачей данных, т.е. продолжительность сеанса отличается, в зависимости от передаваемых данных, поэтому его необходимо поддерживать или прекращать.

На этом уровне работают следующие протоколы: ASP, L2TP, PPTP и другие.

Транспортный уровень (4) – отвечает за надежность передачи данных. Он также разбивает данные на сегменты и собирает их обратно, так как данные бывают разного размера. Существует два известных протокола этого уровня — это TCP и UDP. TCP протокол дает гарантию на то, что данные будут доставлены в полном объеме, а протокол UDP этого не гарантирует, именно поэтому их используют для разных целей.

Сетевой уровень (3) – он предназначен для  определения пути, по которому должны пройти данные. На этом уровне работают маршрутизаторы. Также он отвечает за: трансляцию логических адресов и имён в физические, определение короткого маршрута, коммутацию и маршрутизацию, отслеживание неполадок в сети. Именно на этом уровне работает протокол IP и протоколы маршрутизации, например RIP, OSPF.

Канальный уровень (2) – он обеспечивает взаимодействие на физическом уровне, на этом уровне определяются MAC адреса сетевых устройств, также здесь ведется контроль ошибок и их исправление, т.е. посылает повторный запрос поврежденного кадра.

Физический уровень (1) – это уже непосредственно преобразование всех кадров в электрические импульсы и обратно. Другими словами физическая передача данных. На этом уровне работают концентраторы.

Вот так выглядит весь процесс передачи данных с точки зрения этой модели. Она является эталонной и стандартизированной и поэтому на ней основаны другие сетевые технологии и модели в частности модель TCP/IP.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector