Random number generation in java

Random Time

Similar to what we did with dates, we can generate random temporals with just time components. In order to do that, we can use the second of the day concept. That is, a random time is equal to a random number representing the seconds since the beginning of the day.

4.1. Bounded

The java.time.LocalTime class is a temporal abstraction that encapsulates nothing but time components:

In order to generate a random time between two others, we can:

  1. Generate a random number between the second of the day of the given times
  2. Create a random time using that random number

We can easily verify the behavior of this random time generation algorithm:

4.2. Unbounded

Even unbounded time values should be in 00:00:00 until 23:59:59 range, so we can simply implement this logic by delegation:

Java Random Number Generator

Let’s look at some examples to generate a random number in Java. Later on, we will also look at ThreadLocalRandom and SecureRandom example program.

1. Generate Random integer

Yes, it’s that simple to generate a random integer in java. When we create the Random instance, it generates a long seed value that is used in all the method calls. We can set this seed value in the program, however, it’s not required in most of the cases.

2. Java Random number between 1 and 10

Sometimes we have to generate a random number between a range. For example, in a dice game possible values can be between 1 to 6 only. Below is the code showing how to generate a random number between 1 and 10 inclusive.

The argument in the is excluded, so we have to provide argument as 11. Also, 0 is included in the generated random number, so we have to keep calling nextInt method until we get a value between 1 and 10. You can extend the above code to generate the random number within any given range.

7. Generate Random byte array

We can generate random bytes and place them into a user-supplied byte array using Random class. The number of random bytes produced is equal to the length of the byte array.

8. ThreadLocalRandom in multithreaded environment

Here is a simple example showing ThreadLocalRandom usage in a multithreaded environment.

Below is a sample output of my execution of the above program.

We can’t set seed value for ThreadLocalRandom instance, it will throw .

ThreadLocalRandom class also has some extra utility methods to generate a random number within a range. For example, to generate a random number between 1 and 10, we can do it like below.

ThreadLocalRandom has similar methods for generating random long and double values.

9. SecureRandom Example

You can use SecureRandom class to generate more secure random numbers using any of the listed providers. A quick SecureRandom example code is given below.

That’s all about generating a random number in Java program.

You can download the example code from our GitHub Repository.

Using Java API

The Java API provides us with several ways to achieve our purpose. Let’s see some of them.

2.1. java.lang.Math

The random method of the Math class will return a double value in a range from 0.0 (inclusive) to 1.0 (exclusive). Let’s see how we’d use it to get a random number in a given range defined by min and max:

2.2. java.util.Random

Before Java 1.7, the most popular way of generating random numbers was using nextInt. There were two ways of using this method, with and without parameters. The no-parameter invocation returns any of the int values with approximately equal probability. So, it’s very likely that we’ll get negative numbers:

If we use the netxInt invocation with the bound parameter, we’ll get numbers within a range:

This will give us a number between 0 (inclusive) and parameter (exclusive). So, the bound parameter must be greater than 0. Otherwise, we’ll get a java.lang.IllegalArgumentException.

Java 8 introduced the new ints methods that return a java.util.stream.IntStream. Let’s see how to use them.

The ints method without parameters returns an unlimited stream of int values:

We can also pass in a single parameter to limit the stream size:

And, of course, we can set the maximum and minimum for the generated range:

2.3. java.util.concurrent.ThreadLocalRandom

Java 1.7 release brought us a new and more efficient way of generating random numbers via the ThreadLocalRandom class. This one has three important differences from the Random class:

  • We don’t need to explicitly initiate a new instance of ThreadLocalRandom. This helps us to avoid mistakes of creating lots of useless instances and wasting garbage collector time
  • We can’t set the seed for ThreadLocalRandom, which can lead to a real problem. If we need to set the seed, then we should avoid this way of generating random numbers
  • Random class doesn’t perform well in multi-threaded environments

Now, let’s see how it works:

With Java 8 or above, we have new possibilities. Firstly, we have two variations for the nextInt method:

Secondly, and more importantly, we can use the ints method:

2.4. java.util.SplittableRandom

Java 8 has also brought us a really fast generator — the SplittableRandom class.

As we can see in the JavaDoc, this is a generator for use in parallel computations. It’s important to know that the instances are not thread-safe. So, we have to take care when using this class.

We have available the nextInt and ints methods. With nextInt we can set directly the top and bottom range using the two parameters invocation:

This way of using checks that the max parameter is bigger than min. Otherwise, we’ll get an IllegalArgumentException. However, it doesn’t check if we work with positive or negative numbers. So, any of the parameters can be negative. Also, we have available one- and zero-parameter invocations. Those work in the same way as we have described before.

We have available the ints methods, too. This means that we can easily get a stream of int values. To clarify, we can choose to have a limited or unlimited stream. For a limited stream, we can set the top and bottom for the number generation range:

2.5. java.security.SecureRandom

If we have security-sensitive applications, we should consider using SecureRandom. This is a cryptographically strong generator. Default-constructed instances don’t use cryptographically random seeds. So, we should either:

  • Set the seed — consequently, the seed will be unpredictable
  • Set the java.util.secureRandomSeed system property to true

This class inherits from java.util.Random. So, we have available all the methods we saw above. For example, if we need to get any of the int values, then we’ll call nextInt without parameters:

On the other hand, if we need to set the range, we can call it with the bound parameter:

We must remember that this way of using it throws IllegalArgumentException if the parameter is not bigger than zero.

Latest news

  • 15/11/2020: Easy Random v5.0.0 is out and is now based on Java 11. Feature wise, this release is the same as v4.3.0. Please check the release notes for more details.
  • 07/11/2020: Easy Random v4.3.0 is now released with support for generic types and fluent setters! You can find all details in the change log.

What is Easy Random ?

EasyRandom easyRandom = new EasyRandom();
Person person = easyRandom.nextObject(Person.class);

The method is able to generate random instances of any given type.

What is this EasyRandom API ?

The API provides 7 methods to generate random data: , , , , , and .
What if you need to generate a random ? Or say a random instance of your domain object?
Easy Random provides the API that extends with a method called .
This method is able to generate a random instance of any arbitrary Java bean.

The class is the main entry point to configure instances. It allows you to set all
parameters to control how random data is generated:

EasyRandomParameters parameters = new EasyRandomParameters()
   .seed(123L)
   .objectPoolSize(100)
   .randomizationDepth(3)
   .charset(forName("UTF-8"))
   .timeRange(nine, five)
   .dateRange(today, tomorrow)
   .stringLengthRange(5, 50)
   .collectionSizeRange(1, 10)
   .scanClasspathForConcreteTypes(true)
   .overrideDefaultInitialization(false)
   .ignoreRandomizationErrors(true);

EasyRandom easyRandom = new EasyRandom(parameters);

For more details about these parameters, please refer to the configuration parameters section.

In most cases, default options are enough and you can use the default constructor of .

Easy Random allows you to control how to generate random data through the interface and makes it easy to exclude some fields from the object graph using a :

EasyRandomParameters parameters = new EasyRandomParameters()
   .randomize(String.class, () -> "foo")
   .excludeField(named("age").and(ofType(Integer.class)).and(inClass(Person.class)));

EasyRandom easyRandom = new EasyRandom(parameters);
Person person = easyRandom.nextObject(Person.class);

In the previous example, Easy Random will:

  • Set all fields of type to (using the defined as a lambda expression)
  • Exclude the field named of type in class .

The static methods , and are defined in
which provides common predicates you can use in combination to define exactly which fields to exclude.
A similar class called can be used to define which types to exclude from the object graph.
You can of course use your own in combination with those predefined predicates.

Why Easy Random ?

Populating a Java object with random data can look easy at first glance, unless your domain model involves many related classes. In the previous example, let’s suppose the type is defined as follows:

Without Easy Random, you would write the following code in order to create an instance of the class:

Street street = new Street(12, (byte) 1, "Oxford street");
Address address = new Address(street, "123456", "London", "United Kingdom");
Person person = new Person("Foo", "Bar", "foo.bar@gmail.com", Gender.MALE, address);

And if these classes do not provide constructors with parameters (may be some legacy beans you can’t change), you would write:

Street street = new Street();
street.setNumber(12);
street.setType((byte) 1);
street.setName("Oxford street");

Address address = new Address();
address.setStreet(street);
address.setZipCode("123456");
address.setCity("London");
address.setCountry("United Kingdom");

Person person = new Person();
person.setFirstName("Foo");
person.setLastName("Bar");
person.setEmail("foo.bar@gmail.com");
person.setGender(Gender.MALE);
person.setAddress(address);

With Easy Random, generating a random object is done with .
The library will recursively populate all the object graph. That’s a big difference!

Java Random Class

  • class is part of java.util package.
  • An instance of java Random class is used to generate random numbers.
  • This class provides several methods to generate random numbers of type integer, double, long, float etc.
  • Random number generation algorithm works on the seed value. If not provided, seed value is created from system nano time.
  • If two Random instances have same seed value, then they will generate same sequence of random numbers.
  • Java Random class is thread-safe, however in multithreaded environment it’s advised to use class.
  • Random class instances are not suitable for security sensitive applications, better to use in those cases.

Java Random Constructors

Java Random class has two constructors which are given below:

  1. : creates new random generator
  2. : creates new random generator using specified seed

Java Random Class Methods

Let’s have a look at some of the methods of java Random class.

  1. : This method returns next pseudorandom which is a boolean value from random number generator sequence.
  2. : This method returns next pseudorandom which is double value between 0.0 and 1.0.
  3. : This method returns next pseudorandom which is float value between 0.0 and 1.0.
  4. : This method returns next int value from random number generator sequence.
  5. nextInt(int n): This method return a pseudorandom which is int value between 0 and specified value from random number generator sequence.

Java Random Example

Let’s have a look at the below java Random example program.

Output of the above program is:

Check this post for more about Java Radom Number Generation.

Generate Random Number using Seed

There are two ways we can generate random number using seed.

The seed is the initial value of the internal state of the pseudorandom number generator which is maintained by method next(int).

Output of the above program is:

What if we pass same seed to two different random number generators?

Let’s have a look at the below program and see what happen if we pass same seed to two different random number generators.

Output of the above program is:

We can see that it will generate same random number if we pass same seed to two different random number generators.

Java 8 Random Class Methods

As you can see from above image, there are many new methods added in Java 8 to Random class. These methods can produce a stream of random numbers. Below is a simple program to generate a stream of 5 integers between 1 and 100.

That’s all for a quick roundup on Java Random Class.

Reference: API Doc

How can this be useful ?

Sometimes, the test fixture does not really matter to the test logic. For example, if we want to test the result of a new sorting algorithm, we can generate random input data and assert the output is sorted, regardless of the data itself:

@org.junit.Test
public void testSortAlgorithm() {

   // Given
   int[] ints = easyRandom.nextObject(int[].class);

   // When
   int[] sortedInts = myAwesomeSortAlgo.sort(ints);

   // Then
   assertThat(sortedInts).isSorted(); // fake assertion

}

Another example is testing the persistence of a domain object, we can generate a random domain object, persist it and assert the database contains the same values:

@org.junit.Test
public void testPersistPerson() throws Exception {
   // Given
   Person person = easyRandom.nextObject(Person.class);

   // When
   personDao.persist(person);

   // Then
   assertThat("person_table").column("name").value().isEqualTo(person.getName()); // assretj db
}

There are many other uses cases where Easy Random can be useful, you can find a non exhaustive list in the wiki.

Игра в кости с использованием модуля random в Python

Далее представлен код простой игры в кости, которая поможет понять принцип работы функций модуля random. В игре два участника и два кубика.

  • Участники по очереди бросают кубики, предварительно встряхнув их;
  • Алгоритм высчитывает сумму значений кубиков каждого участника и добавляет полученный результат на доску с результатами;
  • Участник, у которого в результате большее количество очков, выигрывает.

Код программы для игры в кости Python:

Python

import random

PlayerOne = «Анна»
PlayerTwo = «Алекс»

AnnaScore = 0
AlexScore = 0

# У каждого кубика шесть возможных значений
diceOne =
diceTwo =

def playDiceGame():
«»»Оба участника, Анна и Алекс, бросают кубик, используя метод shuffle»»»

for i in range(5):
#оба кубика встряхиваются 5 раз
random.shuffle(diceOne)
random.shuffle(diceTwo)
firstNumber = random.choice(diceOne) # использование метода choice для выбора случайного значения
SecondNumber = random.choice(diceTwo)
return firstNumber + SecondNumber

print(«Игра в кости использует модуль random\n»)

#Давайте сыграем в кости три раза
for i in range(3):
# определим, кто будет бросать кости первым
AlexTossNumber = random.randint(1, 100) # генерация случайного числа от 1 до 100, включая 100
AnnaTossNumber = random.randrange(1, 101, 1) # генерация случайного числа от 1 до 100, не включая 101

if( AlexTossNumber > AnnaTossNumber):
print(«Алекс выиграл жеребьевку.»)
AlexScore = playDiceGame()
AnnaScore = playDiceGame()
else:
print(«Анна выиграла жеребьевку.»)
AnnaScore = playDiceGame()
AlexScore = playDiceGame()

if(AlexScore > AnnaScore):
print («Алекс выиграл игру в кости. Финальный счет Алекса:», AlexScore, «Финальный счет Анны:», AnnaScore, «\n»)
else:
print(«Анна выиграла игру в кости. Финальный счет Анны:», AnnaScore, «Финальный счет Алекса:», AlexScore, «\n»)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

importrandom

PlayerOne=»Анна»

PlayerTwo=»Алекс»

AnnaScore=

AlexScore=

 
# У каждого кубика шесть возможных значений

diceOne=1,2,3,4,5,6

diceTwo=1,2,3,4,5,6

defplayDiceGame()

«»»Оба участника, Анна и Алекс, бросают кубик, используя метод shuffle»»»

foriinrange(5)

#оба кубика встряхиваются 5 раз

random.shuffle(diceOne)

random.shuffle(diceTwo)

firstNumber=random.choice(diceOne)# использование метода choice для выбора случайного значения

SecondNumber=random.choice(diceTwo)

returnfirstNumber+SecondNumber

print(«Игра в кости использует модуль random\n»)

 
#Давайте сыграем в кости три раза

foriinrange(3)

# определим, кто будет бросать кости первым

AlexTossNumber=random.randint(1,100)# генерация случайного числа от 1 до 100, включая 100

AnnaTossNumber=random.randrange(1,101,1)# генерация случайного числа от 1 до 100, не включая 101

if(AlexTossNumber>AnnaTossNumber)

print(«Алекс выиграл жеребьевку.»)

AlexScore=playDiceGame()

AnnaScore=playDiceGame()

else

print(«Анна выиграла жеребьевку.»)

AnnaScore=playDiceGame()

AlexScore=playDiceGame()

if(AlexScore>AnnaScore)

print(«Алекс выиграл игру в кости. Финальный счет Алекса:»,AlexScore,»Финальный счет Анны:»,AnnaScore,»\n»)

else

print(«Анна выиграла игру в кости. Финальный счет Анны:»,AnnaScore,»Финальный счет Алекса:»,AlexScore,»\n»)

Вывод:

Shell

Игра в кости использует модуль random

Анна выиграла жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 5 Финальный счет Алекса: 2

Анна выиграла жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 10 Финальный счет Алекса: 2

Алекс выиграл жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 10 Финальный счет Алекса: 8

1
2
3
4
5
6
7
8
9
10

Игравкостииспользуетмодульrandom

 
Аннавыигралажеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны5ФинальныйсчетАлекса2

 
Аннавыигралажеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны10ФинальныйсчетАлекса2

 
Алексвыигралжеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны10ФинальныйсчетАлекса8

Вот и все. Оставить комментарии можете в секции ниже.

Using Java API

The Java API provides us with several ways to achieve our purpose. Let’s see some of them.

2.1. java.lang.Math

The random method of the Math class will return a double value in a range from 0.0 (inclusive) to 1.0 (exclusive). Let’s see how we’d use it to get a random number in a given range defined by min and max:

2.2. java.util.Random

Before Java 1.7, the most popular way of generating random numbers was using nextInt. There were two ways of using this method, with and without parameters. The no-parameter invocation returns any of the int values with approximately equal probability. So, it’s very likely that we’ll get negative numbers:

If we use the netxInt invocation with the bound parameter, we’ll get numbers within a range:

This will give us a number between 0 (inclusive) and parameter (exclusive). So, the bound parameter must be greater than 0. Otherwise, we’ll get a java.lang.IllegalArgumentException.

Java 8 introduced the new ints methods that return a java.util.stream.IntStream. Let’s see how to use them.

The ints method without parameters returns an unlimited stream of int values:

We can also pass in a single parameter to limit the stream size:

And, of course, we can set the maximum and minimum for the generated range:

2.3. java.util.concurrent.ThreadLocalRandom

Java 1.7 release brought us a new and more efficient way of generating random numbers via the ThreadLocalRandom class. This one has three important differences from the Random class:

  • We don’t need to explicitly initiate a new instance of ThreadLocalRandom. This helps us to avoid mistakes of creating lots of useless instances and wasting garbage collector time
  • We can’t set the seed for ThreadLocalRandom, which can lead to a real problem. If we need to set the seed, then we should avoid this way of generating random numbers
  • Random class doesn’t perform well in multi-threaded environments

Now, let’s see how it works:

With Java 8 or above, we have new possibilities. Firstly, we have two variations for the nextInt method:

Secondly, and more importantly, we can use the ints method:

2.4. java.util.SplittableRandom

Java 8 has also brought us a really fast generator — the SplittableRandom class.

As we can see in the JavaDoc, this is a generator for use in parallel computations. It’s important to know that the instances are not thread-safe. So, we have to take care when using this class.

We have available the nextInt and ints methods. With nextInt we can set directly the top and bottom range using the two parameters invocation:

This way of using checks that the max parameter is bigger than min. Otherwise, we’ll get an IllegalArgumentException. However, it doesn’t check if we work with positive or negative numbers. So, any of the parameters can be negative. Also, we have available one- and zero-parameter invocations. Those work in the same way as we have described before.

We have available the ints methods, too. This means that we can easily get a stream of int values. To clarify, we can choose to have a limited or unlimited stream. For a limited stream, we can set the top and bottom for the number generation range:

2.5. java.security.SecureRandom

If we have security-sensitive applications, we should consider using SecureRandom. This is a cryptographically strong generator. Default-constructed instances don’t use cryptographically random seeds. So, we should either:

  • Set the seed — consequently, the seed will be unpredictable
  • Set the java.util.secureRandomSeed system property to true

This class inherits from java.util.Random. So, we have available all the methods we saw above. For example, if we need to get any of the int values, then we’ll call nextInt without parameters:

On the other hand, if we need to set the range, we can call it with the bound parameter:

We must remember that this way of using it throws IllegalArgumentException if the parameter is not bigger than zero.

Using simple java code with Random

You can use SecureRandom class to generate random String for you.
Let’s understand with the help of example.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

packageorg.arpit.java2blog;

import java.security.SecureRandom;

publicclassRandomStringGeneratorMain{

privatestaticfinalStringCHAR_LIST=

«1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ»;

/**

     * This method generates random string
     * @return
     */

publicStringgenerateRandomStringUsingSecureRandom(intlength){

StringBuffer randStr=newStringBuffer(length);

SecureRandom secureRandom=newSecureRandom();

for(inti=;i<length;i++)

randStr.append(CHAR_LIST.charAt(secureRandom.nextInt(CHAR_LIST.length())));

returnrandStr.toString();

}

publicstaticvoidmain(Stringa){

RandomStringGeneratorMain rsgm=newRandomStringGeneratorMain();

System.out.println(«Generating String of length 10: «+rsgm.generateRandomStringUsingSecureRandom(10));

System.out.println(«Generating String of length 10: «+rsgm.generateRandomStringUsingSecureRandom(10));

System.out.println(«Generating String of length 10: «+rsgm.generateRandomStringUsingSecureRandom(10));

System.out.println(«Generating String of length 8: «+rsgm.generateRandomStringUsingSecureRandom(8));

System.out.println(«Generating String of length 8: «+rsgm.generateRandomStringUsingSecureRandom(8));

System.out.println(«Generating String of length 8: «+rsgm.generateRandomStringUsingSecureRandom(8));

System.out.println(«Generating String of length 7: «+rsgm.generateRandomStringUsingSecureRandom(7));

System.out.println(«Generating String of length 7: «+rsgm.generateRandomStringUsingSecureRandom(7));

System.out.println(«Generating String of length 7: «+rsgm.generateRandomStringUsingSecureRandom(7));

}

}
 

Output:

Awesome Tech Resources:

  • Looking for ️ tech jobs? Go to our job portal.
  • Looking for tech events? Go to tech events ️ Calendar.️

Generating String of length 10: Hz0hHRcO6X
Generating String of length 10: wSnjx6HNlv
Generating String of length 10: 4Wg9Iww0Is
Generating String of length 8: EdJmSrfC
Generating String of length 8: dAifHyQG
Generating String of length 8: HNnxieWg
Generating String of length 7: hQrqQ2L
Generating String of length 7: 0BWBtYI
Generating String of length 7: 3WStHON

Random Date

Up until now, we generated random temporals containing both date and time components. Similarly, we can use the concept of epoch days to generate random temporals with just date components.

An epoch day is equal to the number of days since the 1 January 1970. So in order to generate a random date, we just have to generate a random number and use that number as the epoch day.

3.1. Bounded

We need a temporal abstraction containing only date components, so java.time.LocalDate seems a good candidate:

Here we’re using the  method to convert each LocalDate to its corresponding epoch day. Similarly, we can verify that this approach is correct:

3.2. Unbounded

In order to generate random dates regardless of any range, we can simply generate a random epoch day:

Our random date generator chooses a random day from 100 years before and after the epoch. Again, the rationale behind this is to generate reasonable date values:

ints(long streamSize)

Random.ints() returns a stream producing the given streamSize number of pseudorandom int values.

Syntax

The syntax of ints() method with stream size is

Random.ints(long streamSize)

where

Parameter Description
streamSize The number of values to generate in the stream.

Returns

The method returns IntStream object.

Example 3 – ints(streamSize)

In this example, we will generate eight random integers using ints(streamSize) method and print out these random numbers from the stream to the console.

Java Program

import java.util.Random;
import java.util.function.IntConsumer;
import java.util.stream.IntStream;  

public class Example {  
	public static void main(String[] args) {  
		int streamSize = 8;
		Random random = new Random();  
		IntStream ds = random.ints(streamSize);  

		ds.forEach(new IntConsumer() {
			@Override
			public void accept(int value) {
				System.out.println(value);
			}
		});
	}  
}

Output

790793602
-445498747
-322809516
1575745272
732465345
586364815
1791511337
-1366525847

Как использовать модуль random в Python

Для достижения перечисленных выше задач модуль random будет использовать разнообразные функции. Способы использования данных функций будут описаны в следующих разделах статьи.

В самом начале работы необходимо импортировать модуль random в программу. Только после этого его можно будет полноценно использовать. Оператор для импорта модуля random выглядит следующим образом:

Python

import random

1 importrandom

Теперь рассмотрим использование самого модуля random на простом примере:

Python

import random

print(«Вывод случайного числа при помощи использования random.random()»)
print(random.random())

1
2
3
4
5

importrandom

print(«Вывод случайного числа при помощи использования random.random()»)

print(random.random())

Вывод:

Shell

Вывод случайного числа при помощи использования random.random()
0.9461613475266107

1
2

Выводслучайногочислаприпомощииспользованияrandom.random()

0.9461613475266107

Как видите, в результате мы получили . У вас, конечно, выйдет другое случайно число.

  • является базовой функцией модуля ;
  • Почти все функции модуля зависят от базовой функции ;
  • возвращает следующее случайное число с плавающей запятой в промежутке .

Перед разбором функций модуля random давайте рассмотрим основные сферы их применения.

Random Date

Up until now, we generated random temporals containing both date and time components. Similarly, we can use the concept of epoch days to generate random temporals with just date components.

An epoch day is equal to the number of days since the 1 January 1970. So in order to generate a random date, we just have to generate a random number and use that number as the epoch day.

3.1. Bounded

We need a temporal abstraction containing only date components, so java.time.LocalDate seems a good candidate:

Here we’re using the  method to convert each LocalDate to its corresponding epoch day. Similarly, we can verify that this approach is correct:

3.2. Unbounded

In order to generate random dates regardless of any range, we can simply generate a random epoch day:

Our random date generator chooses a random day from 100 years before and after the epoch. Again, the rationale behind this is to generate reasonable date values:

How can this be useful ?

Sometimes, the test fixture does not really matter to the test logic. For example, if we want to test the result of a new sorting algorithm, we can generate random input data and assert the output is sorted, regardless of the data itself:

@org.junit.Test
public void testSortAlgorithm() {

   // Given
   int[] ints = easyRandom.nextObject(int[].class);

   // When
   int[] sortedInts = myAwesomeSortAlgo.sort(ints);

   // Then
   assertThat(sortedInts).isSorted(); // fake assertion

}

Another example is testing the persistence of a domain object, we can generate a random domain object, persist it and assert the database contains the same values:

@org.junit.Test
public void testPersistPerson() throws Exception {
   // Given
   Person person = easyRandom.nextObject(Person.class);

   // When
   personDao.persist(person);

   // Then
   assertThat("person_table").column("name").value().isEqualTo(person.getName()); // assretj db
}

There are many other uses cases where Easy Random can be useful, you can find a non exhaustive list in the wiki.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector