Сетевой график

Содержание:

Итак, чтобы создать локальную сеть между компьютерами нам потребуется:

Несколько компьютеров (в данном случае рассмотрим вариант сети, объединяющей более двух ПК, а расскажем отдельно), которые станут узлами нашей локальной сети. У каждого ПК необходимо проверить наличие сетевой карты (хоть большинство современных девайсов и снабжены встроенной «сетевухой», но «чем черт не шутит»…).

  • Сетевое оборудование.
    Для организации локальных сетей может использоваться как управляемое (настраиваемое), так и неуправляемое сетевое оборудование. Чтобы сделать небольшую домашнюю сеть вполне подойдет простой неуправляемый 4-6 портовый свитч.
  • Сетевой кабель
    для соединения каждого компьютера с сетевым оборудованием. Общая длина кабеля напрямую зависит от конечного числа ПК, их удаленности друг от друга и архитектуры помещения (здания) в котором создается локальная сеть.
  • Коннекторы
    (разъемы RJ-45), число которых также зависит от количества подключаемых к сети компьютеров. Так, чтобы обжать кабель для каждого ПК потребуется минимум 2 коннектора;
  • Обжимка
    (Кримпер) – инструмент для оконцовки кабеля. (В его отсутствии многие мастера обходятся подручными средствами (например, отверткой), но новичку выполнить данный фокус будет достаточно сложно).

Метод сетевого моделирования

Сетевое планирование и управление получило активное развитие с 50-х годов прошлого века сначала в США, затем в других развитых странах и в СССР. Такие методы сетевого планирования, как CPM, PERT позволили существенно поднять «планку» проектного управления в направлении оптимизации временных и содержательных параметров графиков работ. Это дало возможность разрабатывать расписания проектных задач на основе более эффективной методологии сетевого моделирования, вобравшей в себя весь лучший опыт (схема методов календарного планирования приведена ниже). Сетевая диаграмма имеет различные названия, среди них:

  • сетевой график;
  • сетевая модель;
  • сеть;
  • граф сети;
  • стрелочная диаграмма;
  • PERT-диаграмма, и т.д.

Визуально сетевая модель проекта представляет собой графическую схему последовательного комплекса работ и связей между ними. Стоит заметить, что система планирования и управления проектом целостно отображается в графической форме состава операций, их временных протяженностей и взаимосвязанных событий. Основой метода построения модели служит раздел математики, именуемый теорией графов, сформировавшийся в начале 50-х – конце 60-х годов.

Методы календарного планирования и управления проектам

В модели сетевого планирования и управления под графом понимается геометрическая фигура, включающая бесконечное или конечное множество точек и линий, соединяющих между собой эти линии. Граничные точки графа называют его вершинами, а ориентированные в направлениях соединяющие их точки – ребрами или дугами. Сетевая модель в свой состав включает именно ориентированные графы.

Вид ориентированного графа

Разберем другие основные понятия сетевой модели проекта.

Работа – часть производственного или проектного процесса, имеющая начало и окончание в форме количественно описываемого результата, требующая затрат времени и других ресурсов. Работа отражается на диаграмме в форме однонаправленной стрелочной линии. Формой работ мы можем считать операции, мероприятия и действия.

Событие – факт завершения работ, результат которых необходим и достаточен для начала реализации следующих операций

Вид события на модели отражается в форме кружков, ромбиков (вехи) или других фигур, внутри которых помещается идентификационный номер события.

Веха представляет собой работу с нулевой продолжительностью и обозначает важное, значимое событие в проекте (например, утверждение или подписание документа, акт окончания или начала проектного этапа и т.п.).

Ожидание – это процедура, которая не потребляет никаких ресурсов, кроме затрат времени. Отображается как линия со стрелкой на конце с отметкой длительности и указанием наименования ожидания.

Фиктивная работа или зависимость – вид технологической и организационной связи работ, не требует никаких усилий и ресурсов, в том числе затрат времени

На сетевой диаграмме показывается как пунктирная стрелка.

Построение сетевых графиков.

Сетевой график — это последовательная схема, отражающая порядок выполнения работ проекта. Он позволит вам провести своего рода тестирование: продумать различные стратегические подходы, прежде чем начать работы.

Сетевой график включает три элемента.

• Событие — значительное происшествие в ходе выполнения проекта; иногда также называется узловым событием или вехой. Оно не имеет протяженности во времени и не потребляет ресурсов. Это мгновенная точка отсчета в вашем проекте (как указательный столб на дороге), которая характеризует начало или конец работы или группы работ. Примеры событий: «Черновик отчета утвержден» или «Начало проектирования».

В данном случае слово «событие» употребляется в непривычном для вас контексте. В обычной жизни «событием года» мы называем, например, торжественный прием по случаю избрания нового президента. Но в отличие от нашего термина, это событие не только имеет протяженность во времени, но и требует значительных ресурсов!

• Работа — действия, которые выполняются, чтобы перейти от одного события вашего проекта к другому. Она занимает время и потребляет ресурсы. Примеры описания работ: «Разработать формат отчета» или «Сформулировать требования к новому продукту».

• Продолжительность — действительное календарное время, требуемое на выполнение работы. Также называется периодом или временем работы. Продолжительность работы зависит от ее трудоемкости, количества исполнителей (с учетом их работоспособности), производительности используемого оборудования (например, вычислительная мощность компьютера) и доступности требуемых ресурсов.

Понимание, из чего складывается это время, поможет найти средства и пути его сокращения. Предположим, для тестирования нового программного продукта нужно 24 часа. Если один работник будет заниматься этим ежедневно по шесть часов, то понадобится четыре дня. Одновременное привлечение двух исполнителей не ускорит работу, но в две смены они сделают ее за два дня.

Единицы времени применяются для описания двух взаимосвязанных, но разных характеристик работы. Продолжительность работы — это время от начала до ее завершения, в то время как трудоемкость — это количество затраченных на ее выполнение человеко-часов.

Если четыре исполнителя выполнят данную работу за пять рабочих дней, то это ее продолжительность, а трудоемкость составит 20 человеко-дней. (Трудоемкость подробнее рассматривается в главе 5.).

Чистое время задержки также включается в продолжительность работы. Например, вы отправили отчет на утверждение шефу. Он пролежал в приемной четыре дня и семь часов, после чего шеф в течение часа просмотрел и подписал отчет. Продолжительность работы в данном случае будет пять дней, хотя трудоемкость составила всего один час.

Независимо от сложности вашего проекта, его сетевой график будет содержать все те же три описанных элемента.

Решение задач сетевого планирования

Срок выполнения от 1 дня
Цена от 100 руб./задача
Предоплата 50 %
Кто будет выполнять? преподаватель или аспирант

УЗНАТЬ СТОИМОСТЬ РАБОТЫ ПО СЕТЕВОМУ ПЛАНИРОВАНИЮ

Решение задач сетевого планирования студенты изучают на различных дисциплинах, связанных с теорией графов и методами оптимального решения. В данной статье будут рассмотрены два примера решения таких задач. Мы постараемся не использовать сложных и запутанных формул, чтобы показать, как на самом деле всё просто.

Суть задачи

 Задачи сетевого планирования сводятся к двум целям:

  1. Найти оптимальный маршрут;
  2. Определить, как максимально быстро выполнить проект.

 В первом случае рассматриваются такие случаи, когда необходимо соединить несколько независимых узлов, находящихся в одной сети. Сделать это необходимо максимально коротким способом.

Например, в некотором районе города требуется провести трубопровод к нескольким домам. Понятно, что к разным домам могут вести несколько дорог.

Таким образом, нам нужно определить, какой из маршрутов прокладки будет наиболее коротким. Узлами в этом случае будут наши дома.

Во втором случае задачи предполагают, что существует некий проект, который состоит из нескольких работ. Работы могут выполняться поочередно, друг за другом, но не каждая из них для начала выполнения требует завершения какой-то из предыдущих работ.

Соответственно, обе задачи решаются с помощью графов – точек, соединенных между собой произвольными линиями.

В задаче первого типа граф даётся, как правило, условием задачи, а во втором случае его необходимо изобразить самостоятельно. Этим мы сейчас и займёмся.

Первый случай

  Выше вы видите граф. Цифры в кружках – это дома, к которым телевизионная компания планирует подвести кабеля. Как мы видим, к одному кружку могут вести два или три пути. Пути называются рёбрами графа. У каждого пути есть свой вес. Это наше расстояние.

Нам нужно выбрать из всего этого обилия путей самый короткий, который объединит каждый кружок – вершину графа. Для этой цели существует специальный алгоритм «Прима». Его суть заключается в следующем: Мы начинаем идти из первой вершины и присоединяем к ней ребро, имеющее самый маленький вес. В нашем случае – это ребро 1;2.

Его вес равен 1. Теперь мы присоединяем самое короткое ребро, из всех выходящих из вершин 1 и 2. Это ребро 2;5. Его вес – 3. У нас уже три вершины – 1,2,5. Присоединяем самое короткое ребро, выходящее из них. И это – 2;4. Его вес – 4. Самое короткое ребро, выходящее из вершин 1,2,4,5 – 4;6. Оно равно 3. Последнее ребро – 4;3.

Мы объединили все вершины. Наш путь в сумме составляет: 1 + 3 + 4 + 3 + 5 = 16.  

Второй случай

 Здесь всё немного сложнее, чем в вышеописанном примере. По условию даётся таблица примерно следующего характера.   На основании данной таблицы мы рисуем следующий граф.

  Правила при составлении графа простые: Каждая следующая работа всегда находится правее предшествующей. 

Никакая работа не может быть начата без выполнения всех предыдущих по условию.

Мы не могли бы начать делать b10, не сделав b3, выполнение которой приходится на вершину 3. Мы не можем строить стены, не возведя фундамент.

Тупиков быть не должно. Из каждой вершины выходит как минимум, одно ребро. Далее мы находим так называемый «критический путь». Это самое длинное расстояние от 0 до 6. Мы начинаем двигаться из нуля и присоединяем каждую вершину самым длинным путём. Например, 3 мы можем присоединить, пройдя ребро 0;3, вес которого – 8 или два ребра – 0;1 и 1;3, а так же 0;2 и 2;3.

Обратите внимание, что ребро 3;5 имеет нулевой вес, поэтому и кратчайший путь к вершине 3 будет равен 12. Подпишем самые короткие пути снизу вершин

  Там, где разница между самым коротким и самым длинным путём будет равна нулю, проходит критический путь. На рисунке ниже он подчёркнут двойными чертами.   

Это крайний срок выполнения проекта. Он равен 3 + 9 + 7 = 19.

Раньше этого успеть нельзя. По остальным работам есть резерв времени. Чтобы его посчитать, отнимите верхнее число от нижнего над каждой вершиной.

Основные правила построения сетевого графика

Итак, основные правила построения сетевого графика сводятся к следующему:

Направление стрелок в сетевом графике следует принимать слева направо.
Форма графика должна быть простой, без лишних пересечений, большинство работ следует изображать горизонтальными линиями.
При выполнении параллельных работ, т.е

если одно событие служит началом двух работ или более, заканчивающихся другим событием, вводится зависимость и дополнительное событие, иначе разные работы будут иметь одинаковый код.
Если те или иные работы начинаются после частичного выполнения предшествующей, то эту работу следует разбить на части.
Если после окончания двух работ А и Б можно начать работу В, а начало работы, Г зависит только от окончания работы А и начало работы Д – от окончания работы Б, то на сетевом графике это изображается с помощью зависимостей.
При изображении поточных работ особое внимание уделяется правильной разбивке работ на захватки и выявлению взаимосвязи смежных работ.
Укрупнение сетей производится с соблюдением следующих правил:
группа работ на сетевом графике может изображаться как одна работа, если в этой группе имеется одно начальное и одно конечное событие;
укрупнять в одну работу следует только такие работы, которые закреплены за одним исполнителем (бригадой, участком и т.д.);
в укрупненную сеть нельзя вводить новые события, которых не было на более детальном графике до укрупнения;
наименование работ в укрупненном графике должно быть увязано с наименованием укрупняемых работ;
коды событий, которые сохраняются в укрупненном графике, должны быть такими же, как и в детальном графике.

При построении сетевого графика могут быть следующие ошибки. В сетевом графике не должно быть «тупиков», «хвостов» и «циклов»

«Тупик» — событие (кроме завершающего), из которого не выходит ни одна работа, «хвост» — событие (кроме исходного), в которое не входит ни одна работа, «цикл» — замкнутый контур, в котором работы возвращаются к тому событию, из которого они вышли.
Изображение поставок и других внешних работ осуществляется следующим образом. Работы, которые предшествуют выполнению тех или иных работ сетевого графика, но организационно решаются на другом уровне, называются внешними работами. К внешним работам можно отнести поступления технической документации, поставку материалов или оборудования, завоз строительных машин и т.д. Обычно такие работы графически выделяются, например, утолщенной стрелкой с двойным кружком.
Нумерация (кодирование) событий должна соответствовать последовательности работ во времени, т.е. предшествующим событиям присваиваются меньшие номера. Нумерацию событий рекомендуется производить только после окончательного построения сети и вести от исходного события, которому присваивается нулевой или первый номер. Последующее событие нельзя нумеровать, если не пронумеровано предшествующее ему событие. Кодирование можно вести горизонтальным или вертикальным методом. При горизонтальном методе события кодируют слева направо по прямым до первого пересечения работ. При вертикальном способе нумерацию начинают сверху вниз и снизу вверх с учетом условия: последующее событие получает номер после предыдущего.

Построение сетевого графика

В нашем примере для построения сетевого графика необходимо составить формуляр операций, его можно использовать в качестве образца на практике.

В таблицу сведем следующие данные по каждой операции:

  • номер операции;
  • предшествующие операции;
  • количество исполнителей;
  • продолжительность операции в днях.

В таблице операций их номера соответствует нумерации в карточке-определителе в соответствии с группировкой параллельных операций.

Таблица операций для построения сетевого графика

Номер операции

Предыдущие операции

Кол-во исполнителей, чел.

Продолжительность, дни

1.

10

1

2.

1

2

3

3.

1

3

1

4.

1

2

4

5.

4

1

0,5

6.

3

3

2

7.

5

2

0,5

8.

2,7,6

10

0,5

9.

9

10

0,5

10.

9

1

3

11.

9

2

4

12.

9

2

2

13.

9

2

3

14.

12

2

2

15.

13

3

2

16.

10,11,14,15

10

0,5

17.

16

10

0,5

18.

17

2

2

19.

18

2

3

20.

17

2

2

21.

17

2

3

22.

21

3

1

23.

20

2

2

24.

19,22,23

10

0,5

25.

24

10

0,5

26.

25

5

1

27.

26

5

3

28.

25

3

2

29.

28

3

2

30.

25

2

4

31.

27,29,30

10

0,5

32.

31

10

0,5

33.

32

7

1

34.

32

2

1

35.

33,34

10

1

На основе таблицы операций и карточки-определителя с учетом произведенной группировки параллельных операций осуществляется построение сетевого графика.

Сетевой график, пример

Определим критический путь. Критический путь на данном сетевом графике составляют операции: 1, 4, 5, 7, 8, 9, 13, 15, 16, 17, 18, 19, 24, 25, 28, 29, 31, 32, 33 (34), 35.

В результате построения сетевого графика работы можно сделать вывод, что деятельность организации не укладывается в заданный срок равный 22 рабочим дням, составляя вместо этого 26 дней. При этом операции первой, второй и третьей недели не укладываются в заданный для них срок, равный 5 рабочим дням. По сетевой модели операции 1 недели длятся 7 дней, 2 недели – 6 дней, 3 недели – 6 дней. Операции четвертой и пятой недель укладываются в заданные для них сроки.

Для соблюдения запланированных сроков произведем корректировку сетевого графика.

В нашем примере сетевого графика по данным карточки-распределителя можно сделать вывод, что для некоторых операций в рамках запланированных действий существует резерв специалистов в отделе. Учитывая, что общая численность сотрудников относительно невелика, можно воспользоваться способом корректировки сетевой модели с привлечением дополнительных ресурсов, в качестве которых выступают свободные на момент реализации операции специалисты данного отдела. Благодаря этому сократится срок выполнения операций критического пути, соответственно и сроки всей сетевой модели. Корректировке подлежат операции 1, 2 и 3 недель, так как операции 4 и 5 недель сетевого графика укладываются в заданные сроки.

После корректировки осуществим построение альтернативного сетевого графика.

Необходимо привлечь дополнительных специалистов для выполнения операций 4 (отдел специальных программ), 13 (отдел по организации оздоровительной кампании) и 18 (отдел специальных программ). Расчет трудоемкости операций (Q) определим исходя из произведения числа специалистов (N), выполняющих операцию, на число дней (t), выделенных для ее выполнения:

Q = N * t

Q4 = 2*4 = 8 ч/дн

Q13 = 2*3 = 6 ч/дн

Q18 = 2*2 = 4 ч/дн

В отделе специальных программ работает 5 человек, но в выполнении операции 4 задействовано только 2 человека. В результате привлечения двух специалистов новый срок выполнения операции составит: 8 / 4 = 2 дня. Следовательно, операция 4 будет выполняться 2 дня вместо 4 дней.

В отделе по организации оздоровительной кампании работает 3 специалиста, но в выполнении операции 13 занято только два человека. В данном случае привлечение одного дополнительного специалиста позволит сократить срок выполнения операции: 6 / 3 = 2 дня. Следовательно, операция 13 будет выполняться 2 дня вместо 3 дней.

В выполнении операции 18 задействовано 2 специалиста отдела специальных программ. Привлечение двух дополнительных специалистов позволит сократить срок ее выполнения: 4 / 4 = 1 день. Следовательно, операция 18 будет выполняться 1 день вместо 2 дней.

В результате получаем срок выполнения операций после корректировки сетевого графика с привлечением дополнительных ресурсов:

26 – 2 – 1 – 1 = 22 дня.

Таким образом, за счет произведенной коррекции сетевого графика срок выполнения операций, соответствует изначально заданному сроку в 22 рабочих дня.

Альтернативный график будет аналогичен предыдущему в плане своей структуры, корректировке подвергнуты сроки реализации операций согласно построенной сетевой модели.

Альтернативный сетевой график

Алгоритм построения сетевого графика

Алгоритм построения сетевого графика по методу критического пути состоит из 10 следующих шагов.

Шаг 1. Определить основную цель проекта

Определить основную цель проекта – результат, который должен быть получен после успешного завершения проекта. Это необходимо для определения границ проекта и первоначальной оценки его сроков.

Шаг 2. Выявить ограничения

Выявить ограничения, влияющие отдельные работы проекта или весь сетевой график. Типовыми ограничениями являются доступность ресурсов, сроки или стоимость. Кроме этого, ограничения могут быть заданы законодательными требованиям.

Шаг 4. Оценить длительность работ

Оценить длительность каждой из работ и определить ресурсы, необходимые для ее успешного выполнения. Команда управления проектом должна договориться о том, какие единицы измерения использовать для оценки длительности работ (часы, дни или, например, месяцы), а также выработать требования к максимальной длительности одной работы. Все работы, превышающую эту длительность, должны быть декомпозированы.

Шаг 5. Определить последовательность работ

Определить последовательность работ. Определить работу, которая должна быть выполнена в первую очередь. В некоторых случаю таких работ может быть несколько и они будут выполняться параллельно. Эта работа должна быть самой левой на графе.

Определить работу, которая должны быть выполнена сразу же после первой. Далее определяется работа, которая должна начинаться сразу же после второй, и так далее, пока все работы не будут рассмотрены. Если работа начинается до завершения предыдущей, то предыдущую работу необходимо разделить на составляющие. Работы могут выполняться параллельно, но при условии, что связь работ точно определена.

Начало выполнения параллельных работ должно быть строго привязано к завершению предыдущих работ.

Шаг 6. Указать связи между работами

Указать связи между работами, обычно в виде стрелок, которые показывают последовательность выполнения работ. Направление стрелок устанавливается слева направо.

Шаг 7. Определить раннее начало и раннее окончание

Определить раннее начало и раннее окончание для каждой из работ. Для этого сетевой график просматривают слева направо начиная с первой работы (крайней левой) и далее по очереди двигаются к последней. Последующая работа не может быть начата до тех пор, пока не завершены все предшествующие ей работы. Раннее начало последующей работы будет совпадать с ранним завершением предшествующей.

Если предшествующих работ несколько, то ранним началом последующей работы будет наибольшее из значений раннего окончания одной из предшествующих работ. Раннее окончание каждой из работ определяется как раннее начало плюс длительность работ, оцененная на шаге 4.

Шаг 8. Определить поздние начало и окончание

Определить поздние начало и окончание для каждой из работ. Для этого сетевой график просматривают в обратном направлении — начинают с последней работы (самой правой) и далее по очереди двигаются к первой. Предшествующая работа должна быть завершена до того, как начнется каждая из последующих работ. Позднее окончание работы будет совпадать с поздним началом последующей работы. Если последующих работ несколько, то поздним окончанием работы будет наименьшее из значений позднего начала последующих работ. Позднее начало каждой работы определяется как позднее окончание минус длительность работы.

Шаг 9. Определить временной резерв

Определить временной резерв для каждой из работ. Резерв времени вычисляется как разница между поздним и ранним началом или поздним и ранним окончанием работы.

Шаг 10. Выявить критический путь

Критический путь — это цепочка работ, у которых резерв времени равен нулю. При оптимизации сетевого графика в первую очередь проводится оптимизация работ, лежащих на критическом пути.

Как выглядит график

Любой привычный нам график представлен кривой, расположенной на плоскости (реже в пространстве). Но вид сетевого плана существенно отличается.

Сетевой график проекта может выглядеть двояко: одна методика предполагает обозначение операций в узлах блок-схемы (ОУ), вторая использует для этого соединительные стрелки (ОС). Гораздо удобнее использовать первый способ.

Операция обозначается круглым или прямоугольным блоком. Стрелки, их соединяющие, определяют взаимосвязи между действиями. Поскольку названия работ могут быть достаточно длинными и объемными, в блоках проставляют номера операций, а к графику составляется спецификация.

Пример построения сетевого графика

Несмотря на то, что описанный выше алгоритм может показаться сложным, на самом же деле построение сетевого графика задача несложная. Для того, чтобы убедиться в этом рассмотрим построение сетевого графика на простом примере ремонта детской комнаты.

Шаг 1. Определить основную цель проекта

Представьте, что сейчас лето, вашему сыну исполнилось 7 лет и в сентябре он идет в школу. Вы решил обновить его комнату к новому учебному году и сделать ее подходящей для школьника, т.е. должно появиться полноценной рабочее место, зонирование комнаты измениться, и т.д.

В этом случае целью нашего небольшого проекта будет —  сделать комнату пригодной и приятной для проживания мальчика, который пойдет в начальную школу.

Шаг 2. Выявить ограничения

Бюджет не более 100,000 руб., ремонтные работы можно вести только в рабочие дни с 10:00 до 18:00 с обязательным перерывом с 12:00 до 14:00. Итого получается — 6 рабочих часов в день.

Шаг 3. Определить состав работ

Немного поразмыслив мы накидали основные работы, которые надо сделать, а именно:

  • Нам нужен дизайн-проект новой комнаты;
  • Нам надо закупить материалы для ремонта;
  • Надо составить смету ремонта;
  • Надо выполнить сам ремонт;
  • И т.к. мы решили сделать небольшую перепланировку, то надо согласовать ее с ТСЖ.

Отобразим эти работы в виде блоков:

Рисунок 1. Состав работ

Шаг 4. Оценить длительность работ

Мы решили оценивать длительность работ в днях, т.к. до начала учебного года еще достаточно времени, то такая точность планирования нас вполне устраивает.

Рисунок 2. Длительность работ

Шаг 5. Определить последовательность работ

Теперь определим последовательность работ, мы будем использовать схему построения сетевого графика «сверху-вниз». Первая работа, которую необходимо выполнить — это работа «Разработать дизайн-проекта«. Затем мы оценим стоимость проекта, а параллельно начнем согласование с ТСЖ, т.к. эта задача занимает много времени. После того, как мы оценим проект и его согласуем, мы приступим к покупке всех необходимых материалов и уже затем начнем сам ремонт.

Рисунок 3. Последовательность работ

Укажем стрелками связи между работами.

Рисунок 4. Связи между работами

Шаг 7. Определить раннее начало и раннее окончание

Т.к. мы выбрали модель сетевого график «сверху-вниз», то начинаем его и просматривать сверху вниз, начиная с самой верхней работы, и далее по очереди двигаемся к самой нижней работе.

Напомним, что раннее начало последующей работы будет совпадать с ранним завершением предшествующей, а раннее окончание каждой из работ определяется как раннее начало плюс длительность работ Если предшествующих работ несколько, то ранним началом последующей работы будет наибольшее из значений раннего окончания одной из предшествующих работ.

Рисунок 5. Раннее начало и окончание работ

Шаг 8. Определить поздние начало и окончание

Для того, чтобы определить поздние начало и окончание просмотрим сетевой график в обратном направлении — снизу вверх. Позднее окончание работы будет совпадать с поздним началом последующей работы. Если последующих работ несколько, то поздним окончанием работы будет наименьшее из значений позднего начала последующих работ. Позднее начало каждой работы определяется как позднее окончание минус длительность работы.

Рисунок 6. Позднее начало и окончание работ

Шаг 9. Определить временной резерв

Вычислим временной резерв для каждой из работ. Он вычисляется как разница между поздним и ранним началом или поздним и ранним окончанием работы.

Рисунок 7. Временной резерв

Шаг 10. Выявить критический путь

Как мы уже знаем, критический путь — это цепочка работ, у которых резерв времени равен нулю. Выделим такие задачи на сетевом графике.

Рисунок 8. Критический путь

Задачи «Разработать дизайн-проект«, «Согласовать проект с ТСЖ» и «Закупить необходимые материалы«, «Провести ремонтные работы» составляю критический путь, а его длина составляет 19 дней. Это означает, что в текущем виде проект не может быть выполнен быстрее, чем за 19 дней. Если мы хотим сократить сроки проекта, то нам необходимо оптимизировать задачи, лежащие на критическом пути.

Например, мы можем начать ремонтные работы раньше получения согласования на перепланировку от ТСЖ, приняв на себя риски того, что согласование может быть не получено.

Просмотры:
69 389

Минимизация числа исполнителей проекта при сохранении времени его выполнения

линейная диаграммакарта проекта

  • минимизировать количество одновременно занятых исполнителей;
  • выровнять потребность в трудовых ресурсах на протяжении всего срока выполнения проекта.
  • перемещение работ по оси времени возможно осуществлять только вправо (откладывая их начало);
  • работы критического пути трогать нельзя, т. к. это приведет к увеличению срока выполнения всего проекта;
  • работы, имеющие свободный резерв времени, можно спокойно перемещать на величину этого резерва;
  • перемещение работ, имеющих только полный резерв времени, требует аналогичного сдвига последующих работ;
  • передвигаемые работы на линейной диаграмме выделяют, отмечая заметным символом: звездочкой, штрихом, цветом и т.п.

калькулятора

Таблица 1

Работа (ij) Длительность t(ij), дн. Количество исполнителей
1,2 4 5
2,3 6 3
2,4 5 6
2,7 11 6
3,5 9 1
4,6 9 2
5,7 11 3
6,7 10 5
7,8 4 6


Рис. 1. Пример сетевого графика

Проведем более детальный анализ линейной диаграммы и карты проекта с целью оптимизации трудовых ресурсов: выравнивая потребность в них на протяжении всего проекта и минимизируя количество одновременно занятых исполнителей. График ежедневной потребности ресурса показывает, что минимальное число исполнителей не может быть меньше 6 человек, что определяется их потребностью для работ критического пути. А 15 исполнителей на участке 5-10 дни проекта является явно завышенным и подлежит коррекции в первую очередь.

Рис. 2. Линейная диаграмма и карта проекта до оптимизации

15 исполнителей заняты на работах 2,3; 2,4 и 2,7. Работу 2,3 трогать нельзя, т. к. это работа критического пути. Работа 2,4 имеет только полный резерв, но не имеет свободного резерва времени. Работа 2,7 имеет солидный свободный резерв времени и поэтому наиболее предпочтительна для оптимизации. Используем часть свободного резерва, переместив работу 2,7 (5-15 дни) на 5 дней (ее новый срок 10-20 дни). Тем самым максимально необходимое число исполнителей уменьшилось до 9 человек, т.е. задачу минимизации трудовых ресурсов проекта можно принять завершенной.

Рис. 3. Линейная диаграмма и карта проекта после оптимизации
Далее решим задачу выравнивания потребности в ресурсах, анализируя интервалы времени, связанные с «провалами» карты проекта. С учетом перемещения работы 2,7 падения спроса на исполнителей в середине проекта (16-18 дни) уже не будет, но он останется ближе к концу проекта (29-30 дни). Чтобы сгладить график загрузки, переместим работу 6,7 (19-28 дни), имеющую свободный резерв времени, на 2 дня (новый срок 21-30 дни). Также для целей выравнивания потребности в трудовых ресурсах переместим работу 4,6 (10-18 дни) на 1 день (11-19 дни).
В итоге оптимизации приходим к линейной диаграмме и карте проекта, представленными на рис. 3. Из графика видно улучшение равномерности загрузки исполнителей: новая ежедневная потребность ресурса составляет от 5 до 9 человек в зависимости от этапа выполнения проекта, резких колебаний занятости нет. Длительность выполнения всего проекта при этом осталась неизменной (34 дня), т. е. необходимое условие оптимизации соблюдено.

Видеоинструкция

Desmos

Портал Desmos.com, в отличие от многих других, может хранить ваши графики в своей базе и позволяет делиться с другими юзерами ссылками на них. Однако для этого придется зарегистрироваться на ресурсе.

Поддерживает построение следующих видов графиков:

  • постоянных функций (например, y=x+2);
  • зависимости x от y (x=√(2-y));
  • неравенств (x≤2-y);
  • кусочно-заданных функций (y={x<0: -x, x});
  • в полярных координатах (r(t)=sin(6t));
  • по точке и группе точек ((1,2), (2,3), (3,4));
  • движения точки;
  • функций с параметром (y = |x2 – 2x – 1|);
  • сложных функций (y = ln cos x).

Также он может конвертировать введенные пользователем выражения в таблицы.

Интерфейс Desmos.com несколько отличается от аналогов. Большую часть окна занимает настраиваемая координатная плоскость. В ней можно включать и выключать видимость осей, изменять вид и величину шага сетки, переключаться между градусами и радианами, а также — менять масштаб плоскости и смещать центральную точку.

Слева находится скрываемая панель ввода выражений. Над ней — кнопка «гамбургер», щелчком по которой открывается список примеров различных чертежей. Рядом с кнопкой отображается имя текущего графика, но в нашем случае его нет, так как опция доступна только зарегистрированным пользователям.

Внизу окна — скрываемая виртуальная клавиатура.

Для демонстрации графиков аудитории на Desmos.com предусмотрен режим проектора (кнопка его включения скрыта в настройках координатной плоскости за иконкой гаечного ключа). В этом режиме все линии становятся толще, а надписи -крупнее.

Мы привели лишь краткое описание функциональности сервиса. Если вам нужна справка по работе с ним на русском языке, она находится здесь.

Лучшее, что есть в Desmos.com, это гибко настраиваемый интерфейс, интерактивность, возможность разносить результаты по таблицам и бесплатно хранить свои работы в базе ресурса без ограничений по времени. А недостаток — в том, что сервис не полностью переведен на русский язык.

Методы планирования

В рамках управления проектами используются различные методы сетевого планирования. Применение определенных технологий связано с изменяемыми или неизменяемыми параметрами выполняемых работ.

Детерминированные сетевые модели

Детерминированными моделями называют те проекты, в которых последовательность и продолжительность работ признана однозначной вне зависимости от факторов внешней среды. Они позволяют воссоздать идеальный процесс, к которому следует стремиться при реальной проектной деятельности. Существует несколько методов построения детерминированных моделей:

  • двухмерная циклограмма, где одна ось отвечает за время, а вторая – за объем работ;
  • диаграмма Гантта, в котором проект представлен в графическом и в табличном виде;
  • метод сетевого графика, позволяющий решить задачи производства за счет рационального использования ресурсов или сокращения времени проектирования.

Вероятностные модели

Эти методы применяются в тех случаях, когда точно неизвестна продолжительность и очередность выполняемых работ. Чаще всего это связано с сильной зависимостью от факторов внешней среды:

  • погодных условий;
  • надежности поставщиков;
  • государственной политики;
  • результатов экспериментов и опытов.

Существуют альтернативные и не альтернативные вероятностные модели. Для их построения используют следующие методы:

  • PERT (для оценки и анализа программ);
  • Монте-Карло (имитационное моделирование этапов проекта);
  • GERT (программный анализ и оценка с помощью графики).

Дополнительные методы

Также существуют дополнительные модели графического построения:

  • матричный метод диагональной таблицы (с ориентацией на определенные события);
  • секторный метод, где круг, обозначаемый выполняемым действием, делят на несколько секторов, которые показывают наиболее ранние и поздние даты начала и окончания работ;
  • четырехсекторный метод.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector